Flexible Hardware/Software Platform for
Tracking Applications

Junaid Ansari, José Sanchez, Marina Petrova, Janne Riihijarvi, Ossi Raivio, Krisakorn Rerkrai,
Christine Jardak, Frank Oldewurtel, Matthias Wellens, Lili Wu, and Petri Mahonen
Department of Wireless Networks, RWTH Aachen University, Kackertstrasse 9, D-52072 Aachen, Germany
Email: jan@mobnets.rwth-aachen.de

Abstract— This paper describes the design, implementation
and performance evaluation of a wireless sensor network based
scalable outdoor vehicular tracking system. The system is highly
flexible and configurable both from software and hardware archi-
tecture point of views and enables it to adapt to a wide range of
vehicle tracking applications. We also present some intermediate
results and the rationale behind our design approach. The system
was tested for a network of 100 nodes and is scalable to a few
thousand node setup. We believe that the vehicle localization and
tracking results from our large scale deployment of sensor nodes
and system design experience will be useful to the community.

I. INTRODUCTION

Target tracking has always been considered as one of
the most important applications of wireless sensor networks.
Accordingly, several systems for tracking vehicles, people,
wildlife and other types of targets have been designed and
studied in the literature. The existing systems tend, however,
to be very bespoke, carefully integrated solutions solving a
particular, tightly defined tracking problem.

In this paper, we report on our work towards developing a
flexible sensor network hardware/software platform for target
tracking applications. Our objective was to design a modular
software platform that could be adapted into a variety of
scenarios, and to prototype it on a likewise novel hardware
platform targeted for passive tracking scenarios. The software
platform is carefully separated from the hardware by various
abstraction layers, and due to the modular design various
filtering, data processing and communication solutions can
be used according to the needs of the particular application.
Our hardware design is flexible as well, in the sense of
not being confined to tracking applications with a particular
target object in mind. Combination of magnetometers and
passive infrared sensors makes the platform very versatile,
and we enhanced the platform further by developing automatic
calibration features to remove the influence of environmental
changes.

The rest of the paper is structured as follows. In section III,
we describe the developed hardware platform, followed by the
software design in section IV, where we evaluate and analyze
the performance of various sub-components comprehensively.
In section V, we also present the vehicle tracking results from
our large-scale sensor node deployment experiments. Finally,
in section VI, we conclude the article and propose some future
enhancements to the system.

1550-2252/$25.00 ©2007 IEEE

II. RELATED WORK

GPS (Global Positioning System) has extensively been
used in outdoor navigation and guidance systems. It involves
receiving active satellite signals for determining the position,
which is vulnerable to active jamming in hostile environments.
It cannot be used in monitoring and surveillance applications,
which are based on passively detecting an object. Furthermore,
GPS based systems cannot provide micro-level granularity and
their performance suffers badly in highly urban areas and
inside tunnels.

There have been many proposals for the WSN based vehicle
tracking systems but real designs with extensive measurements
and experimental campaigns have not been so common. One
of the earlier attempts for WSN based outdoor vehicle tracking
was demonstrated by UC Berkeley in 2001 [1]. However, this
system is restricted to only 1D target tracking. C. Sharp et.
al. designed a sensor network based large scale system for
vehicle tracking [2], using magnetometer sensors. The authors
found that the performance suffers badly from the effects of
packaging and ferromagnetic content around.

Line in the sand project [3] aimed specially at military
surveillance application.

Commercially available XSM nodes [4] use a much slower
radio chip (Chipcon’s CC1000) and a less attractive proces-
sor (Atmel’s ATmegal28L) compared to the current ultra-
low-power designs. Also the absence of the magnetometer
calibration scheme in some of the above mentioned systems
can result in environmental interferences, which we have
addressed in our design [5]. While Exscal [6] project aims
at the scalability, we concentrate also on modularity and
flexibility to target wider range of applications. Trio node
[7] is specifically designed for outdoor applications where
ample amount of sun-light is available. Approaches like image
processing based methods for vehicle tracking are not only
expensive but suffer heavily from constraints like illumination
effects, camera transformation, scalability etc.

III. HARDWARE DESIGN

The sensor selection is highly dependent upon application
requirements. We opted a low-power architecture consisting
of commercially available MoteIV’s Telos [8] platform for
computing and communication and providing standard analog
and digital interfaces to connect various types of sensors. We



designed our own customized sensor board platform contain-
ing the necessary sensors and signal conditioning circuitries
that can be connected to the Telos platform. The sensor board
consists of two types of sensors namely passive infrared (PIR)
sensors and anisotropic magneto-resistive (AMR) sensors. PIR
sensors detect the differential thermal energy signal rather
than absolute values and are therefore highly suitable for
tracking applications. AMR sensors generate an output voltage
proportional to the magnetic field strength. A moving ferro-
magnetic object disturbs Earth’s magnetic field and causes the
AMR sensors to generate an output signal, which is used for
detection purposes as explained in section IV-B.

The sensor node requires 3V for its operation. Low-power
architecture is an important consideration in our design. The
energy efficient design includes individual power control of
the PIR and AMR sensors. The output signal of the sensors
is amplified using two-stage instrumentation amplifiers before
feeding it to the ADC of the Telos platform. The circuit also
includes noise suppression filters. In order to demagnetize the
AMR sensors, we included a provision for external set/reset
circuitry, which we always used before any large scale deploy-
ment setups.

The packaged sensor node is shown in Fig. 1. A set
of four PIR sensors (called as North-West-South-East) are
mounted orthogonally for a complete 360-degree field of view.
Fresnel lenses are used to increase the sensing range but at
the same time not losing the beam-width below 90 degrees
per PIR sensor. The block diagram of the sensor node is
shown in Fig. 2. A combination of two axis magnetometer
(AMRa and AMRD) enables the sensor node to detect moving
ferromagnetic objects in a field.

The amplitude level from the AMR sensors is highly depen-
dent on its orientation with respect to Earth’s magnetic field,
the ferromagnetic material content in the surroundings and
obviously on the strength of Earth’s magnetic lines of force.
For the optimum swing of the signal, the amplified output of
the magnetometer to be fed to the ADC should be at the mid-
scale (around 1.5 V). This is done by tuning the resistance of a

Power switch
Wireless sensor node
Main sensor board
PIR board

Fresnel lens

Magnetometer chip

Batteries

Fig. 1. Top view of the sensor node (with the weather-proof lid removed).

AA Battery connector
Power switch

Power

12C

Calibration and power

routing Telos Platform

V_Ref
CaA e — — — — ——— —
caB | AMRa_out
Magneto-resistive Signal , AMRb_out
[} " .
AMRPower sensor conditioning
L —— P ———
Set/Reset [ - _
PIRPower ! Passive infrared Signal I PIR(hw.e,s)_out
| sensor (North, West, [ | conditioning |
East. South)
S |

Fig. 2. Block diagram of the sensor node.

digital potentiometer, and hence adjusting the voltage levels at
one of the inputs of the second stage amplifier. This process,
known as calibration, is a recursive process. Firstly, a set of
10 AMR samples are taken and the mode value is calculated.
The underlying reason is that the probability of an outlier is
very low. The mode value is converted into voltage and is
checked whether it lies within a small window around the
mid-scale voltage. Otherwise, the value of the potentiometer
is increased or decreased accordingly by sending appropriate
commands to the digital potentiometer over the I12C bus. The
process is repeated till the voltage assumes a mid-scale value.
This process not only prevents clipping of the signal but
also enables the sensor node to calibrate automatically to any
environmental condition.

IV. SOFTWARE DESIGN AND EVALUATION OF INDIVIDUAL
COMPONENTS

We followed a modular and layered approach in the soft-
ware development, which allows reuse of different modules,
adaptability to application needs and high scalability. The
embedded software application running on each sensor node
was developed in TinyOS [9], whereas data gathering and
tracking algorithm was implemented in C/C++ on a gateway
PC. Keeping various components decoupled from each other
also facilitated the debugging process, which otherwise can
be very complicated, specially in embedded software devel-
opment.

The system architecture for a vehicle tracking scenario is
shown in Fig. 3. The sensor nodes detect the presence of a
vehicle in the sensor field and transmit the relevant information
to the gateway node, connected to the gateway PC. The
gateway PC collaboratively uses the information from sensor
nodes to track the vehicle. The software stack shown on the
right hand side in the figure is implemented on the sensor
nodes, whereas the one on the left hand side is implemented on
the gateway. The lowest level of abstraction in our embedded
software stack is at the device driver level, giving access



to various peripherals and interfaces of the microcontroller.
The system uses ADC interface for getting readings from
the AMR and PIR sensors. The I2C interface is used to
control the power to the AMR and PIR circuitries and also
to calibrate the AMR circuit. The SPI interface is used by
the microcontroller to communicate with the IEEE 802.15.4
compliant radio transceiver chip (CC2420 [10]) on the Telos
platform. The UART interface is used at the gateway node to
communicate with the gateway PC. Since all the interfaces
share a common serial bus, so we introduced a bus arbitration
mechanism to avoid potential conflicts.

We consider the sensor calibration scheme, the data acquisi-
tion from sensors and the time synchronization as middleware
components in our software stack and use separate well
defined interfaces for these. Our AMR calibration scheme
is a recursive process and can flexibly be called from the
application, when required. The data acquisition interface
gives the data from the four PIR and two AMR sensors
at a configurable sampling rate. The time synchronization
protocol (Flood-time-synchronization-protocol [11]) running
in the WSN does not need to be configured manually and
automatically chooses the master node. All nodes including
the gateway node get into synchronization with the master
node at the start-up.

A. Software Filtering

Despite the use of hardware implemented noise removing
filters, the effects of the thermal noise and the noise from
the system electronics itself is still present. For this purpose,
we implemented a low-pass filter. We restricted ourselves to
finite impulse response (FIR) filters of lower order to keep
the complexity as low as possible while guaranteeing the filter
stability. However, in our design it is possible to adjust all filter
parameters such as type, order, cut-off frequency and filter
coefficients according to the characteristics of the incoming
raw sensor readings.

Fig. 4 shows the signature of a slowly moving vehicle
passing by a PIR sensor. The grey solid line shows the

Sensor node

Gateway

IEEE 802.15.4

L uss
N

Data parsing

Routing

Vehicle detection

Data flow
Gateway
node

Noise suppression and filtering

Data flow

Middleware: data aquisition, sensor

la=clpostissecion calibration, time synchronization

PC

Low level drivers and interfaces:
ADC, SPI, I12C, UART

Data flow
Gateway

Localization and tracking

Hardware:

Data representation .
radio, processor, sensors

Fig. 3. Design and architecture of the vehicle tracking system.

2700

2600

2500

2400

Passive infrared sensor reading

2300

22C'DO 2 4 6 8 10 12 14 16 18

Time (s)

Fig. 4. The signature of a slowly moving vehicle as seen by the PIR sensor.
The grey curve shows the raw PIR readings; the black curve is the same data
after FIR filtering.

signature based on raw values and the black solid line depicts
its noise filtered representation. The noise filtering smoothes
the signature which enables the detection algorithm to obtain
reliable results. The low-pass filter is applied to the AMR
sensor readings as well and shows similar behaviour.

The sensor node platform, placed outdoors, is vulnerable
to changes in ambient temperature and/or light. In addition,
Earth’s magnetic field changes both in orientation and strength
all the time. This affects the ambient field strength detected by
the magnetometer. Because of the changes in the environment,
the base level of the magnetometer readings needs to be
corrected. We achieve this by constantly calculating a long-
term exponentially weighted moving average (EWMA) and
subtracting this value from the noise filtered data. After
applying the EWMA filter each value represents the weighted
average of all the previous means, including the mean of
the present sample. The weights decrease exponentially going
backward in time. Only the base-level corrected data is used
as an input for the detection algorithm which is described in
the next subsection. Again the smoothing factor of EWMA
filter is kept adjustable.

B. Vehicle Detection

After noise filtering and base level correction, we obtain
vehicle signatures (both from AMR and PIR sensors) as
presented in Fig. 4 and Fig. 5. These are the inputs to the
detection algorithm. For simplicity, we describe the detection
procedure using AMR sensor readings in the following.

Every time the sensor readings cross a positive and negative
thresholds integration (called impulse integration) is started.
These thresholds can be configured through software. When
the sensor readings return between the thresholds, a dwell
timer is started which is indicated by thick black line in
Fig. 5. If the sensor readings cross the thresholds before the
dwell timer expires, the timer is reset and the calculation
of the impulse integration is continued. Two of such events
are shown in the figure and are represented by red crosses.
However, on the contrary, when the dwell timer expires, the
impulse integration value is compared against a threshold



r X
40
3 29

Magnetometer reading

(low-pass-filtered and base-line-corrected)
o

0 2 4 6 8 10 12 14 16 18
Time (s)

Fig. 5. The signature of a slowly moving vehicle as seen by the AMR sensor
after FIR and EWMA filtering (solid black curve). The red area between this
curve and the thresholds (dotted lines) represents the integrated impulse value.
When the AMR readings return to the area between the thresholds, a dwell
timer is started (horizontal black line). If the readings cross the threshold
before this timer expires, the timer is reset and the integration of impulse
continued (red cross terminating the black timer line). When the dwell timer
expires (upward arrow), the impulse value is compared against a pre-set value.
Too small impulses are considered as noise, and detection is not signalled (red
cross over the upward arrow).

called the impulse threshold. A detection is triggered only
when the integrated impulse value is greater than the impulse
threshold. The dwell timer value and the impulse thresholds
are selected empirically for different objects. A very small
dwell timer value causes one event to be splitted into two or
more detections; too large value causes two or more nearby
events to be merged into a single detection. In case of too
small impulse thresholds, noise peaks may cause detection and
a too large value results real events to be considered as noise.
When the object is detected, the event is time-stamped and a
message is sent from the sensor nodes to the gateway using
the TinyAODV [12] routing protocol.

C. False Positives Rejection

During our field experiments, we observed that sometimes
the sensors (both PIR and AMR) triggered detections even
when no vehicle was present in the sensor field. Due to sudden
changes in the environmental conditions (abrupt clouds and
sun), PIR sensors instigated false detections. Some grasshop-
pers and sparrows, very near to the sensor nodes also caused
PIR detections, which of course is undesirable. In the field
tests, a very few times magnetometer triggered false detections
because of the drift of the node position/orientation due to
air or vibration. The nodes may also trigger false detections
because the detection algorithm is state dependent and hence
a last state can possibly fulfil the detection conditions thereby
causing a false detection.

Although, the noise suppression is done at various levels in
the system, it is possible that some unwanted noisy samples
can still reside in the system and can trigger false detections.
Fig. 6 shows the packets received at the gateway node when
a vehicle passes in front of a sensor field composed of
orderly arranged 50 sensor nodes. It can easily be seen that a
few detection packets (y-axis magnetometer and some X-axis

T * g
g O
ov
a5 : ‘; ,}Oa* 2 Ras
O x-axis magnetometer N wov g
401 E
Vv y-axis magnetometer * Ww
wn 35F * _directi % v B
8 north—direction PIR sensor " & v v
o 30 %%o wo 4
° v
v
2 251 VD v B
o #* 0 v
O L o v 4
22 s o 0v o
VRES 4o O e v Y ° il
v
10l Qoa% v i
sl * owv v i
&0 L L L L L L L L L L
10 20 30 40 50 60 70 80 20 100 110 120

Received detection packets at the gateway node

Fig. 6. Illustration of different types of detection packets arriving at the
gateway sensor node as the vehicle traverses once through the sensor field
starting from the first sensor node towards the last sensor node.

magnetometer) from some nodes do not adhere to the linearly
increasing line. These may result in false position estimates
and have to be suppressed.

On the wireless sensor node alone, there is no possibility
to identify the cases of false detections. This information
is only available from the network as a whole. Our system
uses a neighborhood based false positives rejection scheme.
The sensor detections of neighbouring nodes along with their
global time-stamps are used to determine the outliers and false
positives. By fusing the AMR and PIR detections using the
spatial (neighbourhood) and time-stamp information in the
network, anomalies are effectively suppressed.

V. OVERALL SYSTEM PERFORMANCE RESULTS

We have found that the sensor nodes are able to detect
the presence of normally seen on-road cars reliably from a
distance of 5m. We evaluated the performance of the system
in a setup of 50 sensor nodes both in a paved asphalt surface
and in uneven rugged terrain. The sensor nodes deployed in
the sensor field have unique IDs and their individual positions
are known before hand. The sensor nodes are deployed along
a U-shaped track in two rows with every sensor node 5 m apart
from any other. It may be noted that the deployment scheme
uses a 1D sensor nodes setup but except for the localization
logic, the rest of the system components can be used as-it-is
for any arbitrary motion in 2D. For tracking multiple objects
at the same time, schemes like [13] needs to be included after
the false positive rejection scheme.

The tracking algorithm computes the position of the vehicle
using the detection packets received from the WSN. The
gateway PC accepts a data packet from the gateway sensor
node. For each wireless sensor node in the sensor field,
there exists a data structure containing information like the
sensor detections, time stamp value and the node position.
When the gateway PC accepts a detection packet from a
particular sensor node, it updates the corresponding fields for
the sensor detections and time stamp. Due to the nature of
the threshold based vehicle detection scheme, different sensors
may detect the same vehicle at close but slightly different
time instants. As a result, the gateway PC receives multiple
detection packets from a particular sensor node, corresponding



Y—axis [m]

30 35 40
X—axis [m]

Fig. 7. Output of the tracking algorithm.

to different sensors. The algorithm is, therefore, developed
to update the corresponding detection field values on the fly.
Since in our scenario, two sensor nodes are deployed just in
front of each other and the vehicle passes through the corridor
between them, the two sensor nodes (theoretically) detect the
vehicle at the same time instant. However since only one
packet can be transmitted at a time, the tracking algorithm tries
to compute the position of the vehicle at the arrival of each
valid packet. When there is enough information available to
compute the position incorporating the detections performed
by the neighborhood and time-stamp values of the packets,
the tracking algorithm results into a position update. It may
be noted that this scheme does not impart any extra latency
in comparison to the approach of first storing all the relevant
detections and later applying a localization logic.

Fig. 7 shows the output of the tracking algorithm. The
sensor nodes are shown by small circles on the U-shaped
sensor field deployment scheme. The asterisks show the po-
sition of the vehicle, running at a speed of approx. 50 km/h,
computed by the tracking algorithm. Before the vehicle enters
into the sensor field, the default position is at the origin. The
tracking algorithm approximates the position of the vehicle
to be in the middle of two oppositely facing nodes. It may
be observed that some of nodes did not trigger detections.
Using the positioning information, the tracking algorithm also
approximates the speed of the vehicle, which we found to be
reasonably accurate. In the data representation component, the
vehicle’s trajectory is computed on GPS scale. This is achieved
by introducing two GPS anchor points in the sensor field
and performing a mapping from Cartesian to GPS coordinate
system based on Vincenty’s work [14].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented both the hardware and
software design of our platform for tracking applications. The
modular and layered approach makes our platform flexible
and adaptable to a broad category of passive target tracking
applications. We also describe the sub-components of our
target tracking system and the underlying logic deriving from
realistic experimental data. We experimented it for the pre-
sented outdoor vehicle tracking application and also for an
indoor intruder detection application. For these applications,

10

we could simply set/tune the parameters such as sampling rates
for the sensors, type, order and cut-off frequency of the FIR
filters, the coefficient of the EWMA filter in a flexible way and
finally optimize the dwell timer and impulse threshold values
used in the detection algorithm.

We obtained reliable vehicle tracking results from a large
scale system deployment experiment in real-time. We found
that the system has a lower latency and is scalable. Because
of the modularity in the design, we could also easily integrate
a dynamic gateway selection mechanism on top of the routing
for making the system robust against possible gateway failures.

In the future, finer granularity (reliability) in position esti-
mates may be introduced by mapping the confidence levels of
individual detections against a suitable cost function. Different
types of vehicles have different but unique signal signatures
[15], [16]. Using pattern recognition and signal processing
algorithms, these signatures may be used to identify the type
of the vehicle e.g. a car, van, truck, bus, etc.

At present, the system needs to be deployed according to a
prior node location map. In the future, a self-localizing service
may be added on the sensor nodes. As a result, the sensor
nodes may be thrown randomly in the sensor field and will be
able to localize themselves automatically (e.g. [17]).

ACKNOWLEDGMENT

We would like to thank European Union (project IST-
004536-RUNES), IABG and RWTH Aachen University for
the financial support.

REFERENCES

Tracking vehicles with a UAV-delivered sensor
“http://robotics.eecs.berkeley.edu/~pister/29palms0103/.”

C. Sharp et al., “Design and implementation of a sensor network system
for vehicle tracking and autonomous interception,” in Second European
Workshop on Wireless Sensor Networks, Jan.-Feb. 2005.

A. Arora et al., “A line in the sand: A wireless sensor network for target
detection,” To appear in Computer Networks (Elsevier), 2004.
“Wireless security system - MSP410,” http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/MSP410_Datasheet.pdf.

J. Ansari et al., “Demo abstract: Flexible hardware/software platform
for tracking applications,” in SenSys, 2006.

A. Arora and R. Ramnath and E. Ertin, “Exscal: Elements of an extreme
scale wireless sensor network,” 2005.

P. Dutta et al., “Trio: enabling sustainable and scalable outdoor wireless
sensor network deployments,” in /PSN ’06, 2006.

“Datasheet for MoteIV’s Telos,” http://www.moteiv.com/products/docs/
tmote-sky-datasheet.pdf.

TinyOS: An open-source Operating System for the networked sensor
regime , “http://www.tinyos.net/.”

“Datasheet for chipcon’s CC2420 2.4 GHz RF Tranceiver,” http://www.
chipcon.com/files/CC2420_Data_Sheet_1_3.pdf.

M. Maréti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in SenSys 04, 2004.

Tiny AODV, “http://tinyos.cvs.sourceforge.net/.”

S. Oh, L. Schenato, P. Chen and S. Sastry, “A scalable real-time multiple-
target tracking algorithm for sensor networks,” Dept. of EECS, UC
Berkeley, USA., Tech. Rep. UCB//ERL MO05/9, Feb. 2005.

T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid
with application of nested equations,” Survey review 22 (176), 1975.
M. F. Duarte and Y. H. Hu, “Vehicle classification in distributed sensor
networks,” J. Parall. Distr. Comp.., vol. 64, no. 7, pp. 826-838, 2004.
L. Gu et al., “Lightweight detection and classification for wireless sensor
networks in realistic environments,” in SenSys '05, 2005, pp. 205-217.
N. Priyantha er al., “Anchor-Free Distributed Localization in Sensor
Networks,” CSAIL, M.I.T., Tech. Rep. TR-892, April 2003.

[1]

network,

[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]
[12]
[13]
[14]
[15]
(16]

[17]



