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Abstract— The problem of channel allocation has been exten-
sively studied in the context of cellular networks. There isa
substantial amount of work in the field of dynamic frequency
assignment for WLANs and mesh networks as well. The growing
interest in the cognitive radio technology and its capability to
offer more efficient spectrum usage brought this problem back as
one of the most popular research topics nowadays. In this paper
we present two quite simple to implement, distributed algorithms
for selecting channels, in cognitive radio environment, sothat the
load is distributed (smoothed) over them.

I. I NTRODUCTION

Cognitive radio (CR) technology is emerging as an oppor-
tunity to enable dynamic and real-time spectrum access. The
cognitive radio paradigm was originally introduced by Mi-
tola [1]. Cognitive radios can determine the best-possibleradio
settings, through a learning process using the environmental
stimuli. This enables the radio to achieve optimal performance
objectives. CRs offer an advanced spectrum management
capability and are currently extensively studied as a solution
to enhance spectrum utilization.

The problem of channel allocation in wireless networks has
been an interesting research topic for long time now. A large
number of solutions have been suggested for the cellular net-
works and WLANs. Techniques such as simulated annealing,
graph colouring, neural networks and tabu search has been
considered [2], [3], [4], [5]. An excellent review on various
solutions for frequency assignment in cellular networks is
given in [6]. Similarly, there are number of solutions, both
centralized and distributed, addressing the frequency allocation
problem in WLANs [7], [8], [9].

Recently, efforts have been made to model the opportunistic
spectrum access and solve the channel allocation in a cognitive
radio environment using a game theoretical approach, see [10],
[11], [12] as examples. We believe that there are, in fact,
two separate channel allocation problems related to cognitive
radio networks. First and the obvious one is the much studied
problem for the secondary users to detect spectrum opportu-
nities that are opened by the non-transmitting primary users.
In this case, the secondary users need to find out the spectrum
opportunities and decide how to use them. Second, there is
a problem how secondary users should chose between the
available channels. This is, of course, a sort of load balancing
or resource allocation problem, which can be quite difficult
to solve if there is no central authority and the environment

becomes very dynamic. In fact, Mähönen and Petrova [13]
have noted that both the first and second problem maybe open
to flash crowdeffects in certain circumstances.

This paper addresses the problem of frequency selection
by secondary users in a CR environment. The goal is to
minimize the interference level and maximize the throughput
for each individual user without damaging the performance of
the other users. We present two simple algorithms to achieve
load balancing among the channels for the secondary users in
quite general framework. The algorithms are sampling based
and as such reach equilibrium quite fast.

The paper is organized as follows. In section II we describe
our system model. Section III and IV we give an overview of
the load balancing algorithms that we are using for adaptive
channel allocation. Section VI presents our simulation results
and observations. finally in section VII we conclude our paper.

II. SYSTEM MODEL

We consider the following system model. We are givenn
balls (agentswith a cognitive radio capability) andm bins
(channels or frequencies). For simplicity, we assume that all
balls have equal size, i. e., all users impose the same traffic
load to the system and they use the same radio technology
for communication, e.g., WLAN (802.11b/g). Each radio is
assigned with a frequency, andni denotes theload of channel
i, i. e., the number of balls that select bini ∈ [m]. Since
we assume that agents are indistinguishable, the system can
be fully described by the state vectorn = (ni)i∈[m]. The
equal traffic load is selected to keep our discussion simple.
The presented solution will also work with unequal loads.

Each bin i has an individual capacity boundδi which
may or may not be elastic. We consider only systems with
elastic capacity boundaries such as CDMA (Code Division
Multiple Access). Systems with fixed capacity boundaries such
as TDMA (Time Division Multiple Access) are not considered
here.

The ball should decide if it is staying in the bin or
changing the bin based on the objective to achieve the best
possible performance. It should be noted that the balls have
a Poissonian living-time. It can happen that new balls (users)
come into the system and try to acquire a channel. This means
that there will be fluctuations of the number of ballsn in time.



Each bini ∈ [m] is associated with acost function1 ci :
N 7→ R

+
0 . The value ofci(ni) specifies the cost incurred to

all balls choosing bini. For the cost function we may choose
any of the utilities described below with the convention that
users aim at minimizing these values, as is the case, e. g., for
latency. If the utility is any quantity which is to be maximized,
e.g., throughput, then we can model cost as its reciprocal. We
normalize the scale at which we measure cost, such that the
maximum value of anyci is 1 and the minimum value is0.
Let

C(n) =
∑

i∈[m]

ni

n
· ci(ni)

denote the average cost sustained by the agents. The natural
question to ask in this case is: What are the balanced states
in this model? A ball has an incentive to migrate from its
current bin to another bin if, it gains more utility by doing so.
We can consider a staten to be stable, if no agent has such
an incentive. This notion is formalized by the concept of Nash
equilibria.

Definition 1 (Nash equilibrium):A state n is at a Nash
equilibrium if for all machinesi and j with ni > 0 it holds
that ci(ni) ≤ cj(nj + 1).

Due to a potential function argument [14], pure Nash equi-
libria do always exist in this model, even if balls have different
weights [15]. Our goal is the design of distributed algorithms
by which balls can attain such an equilibrium in an exact or
in an approximate sense quickly. One should note that Nash
equilibria do not necessarily optimize the overall performance
of the system, but they have the appealing property of being
fair from a local point of view, thus ensuring stability.

Before defining the utility functions for the balls in a single
bin we will first name several assumptions we take into ac-
count. We assume that there is no inter-channel interference in
the system. This means that the effect of overlapping channels
is neglected. Furthermore the balls have the capability to
sample the number of ballsni in a certain bin. Generally
speaking it is very difficult to know how many radios are using
the same frequency in the IEEE 802.11 case for example.
We are of course able to measure radiation power and by
making an educated guess estimate theni. This is only a
weak assumption, as we will be showing in this paper that the
precise knowledge is not necessary for our distributed channel
allocation algorithm.

We can now define general utilities that can be used as a
goal to play the game and come up to a algorithmic solution
for adaptive frequency allocation.

1) Utility 1: Minimize interference. The goal is to minimize
the number of balls per bin. In a more complicated
case when an inter-channel interference is considered
we should minimize the number ofni in a single bin
but also in the neigbouring(i− 1) and (i + 1) bins.

1In this paper we mostly use terms utility and cost interchangeably. In the
game theoretical concepts and algoritm description we are using the term cost
function, however, the networking community is often usingutility function.

2) Utility 2: Maximize throughput. Maximizing the
throughput is tightly related to minimizing interference.
In case of a stochastic MAC less balls will lead both to
a minimized interference and maximized throughput.

3) Utility 3: Minimize Latency. This may be a valid
selection criterion for time-sensitive applications like
streaming or voice calls.

In this paper we consider the throughput maximization as
a utility function using two different MAC protocols, namely
slotted-ALOHA and CSMA/CA as example cases.

The slotted ALOHA [16] is a well-known extension of the
pure ALOHA where the users are allowed to transmit only at
the beginning of the slot. The maximum throughput that can
be achieved isS = Ge−G, where theG is an offered load. It
should be noted that in our case all the users offer the same
amount of traffic load according to a same Poisson process.

In order to consider CSMA/CA and to have a functional
form for the utility, we have used the well-known Bianchi’s
analytical model for the saturation throughput of IEEE 802.11
DCF systems. We refer the reader to look details from [17],
where the complex derivation is well described. The functional
form has been used to test our game model, but the detailed
parameter values are not used. This is due to fact that the
functional forms of cost functions are, in our case, a defining
factor for the performance of the algorithm, and the specific
values of different multipliers do not affect the convergence
properties. We omit the detailed description of the Bianchi
approximation equations due to space limitation.

III. C OMPUTATION MODEL

In the following, we will present two algorithms that satisfy
the properties which we believe are crucial for the implementa-
tion of real-world load adaptive channel allocation algorithms
in a decentralized manner.

• Local control.Algorithms are executed locally by wire-
less devices. They do not rely on central coordination
by a base station or any selected node which takes the
role of a leader or coordinator. In particular, they do not
rely on the assumption that other nodes execute the same
algorithm.

• Local information.Algorithms may rely exclusively on
information which they are able to gather or sense au-
tonomously.

• Simplicity.Computation executed at the individual nodes
is simple and stateless. This ensures that nodes can
join and leave the network at any time without re-
initialization.

• Efficiency.Energy consumptions should be reduced to
minimum.

• Selfishness.In order to be sure that our protocols are
accepted by the users, they must strive to maximize their
own utility rather than the overall system utility.

In general, we assume that an agent using channeli can
easily determine its own costci(ni) (e. g., by measuring its
throughput). As mentioned before, we assume that CRs can



estimate, by scanning the spectrum, the number of agents using
each channel. To that end, we provide our algorithms with a
primitive MEASURE LOAD(i) which returns the value ofni.
We will also take into account that this value may be observed
under the influence of uncertainty.

To decide whether or not an agent should switch from its
current channel to another, it would be helpful to know the util-
ity of the candidate destination channel. Though this utility can
be measured by migrating to this channel on a trial basis, such
a test may be prohibitively expensive. Alternatively, the CR
may decode packet headers on the target channel to estimate
the utility perceived by agents currently using this channel.
Independent of a particular implementation, we provide our
algorithms with a second primitive MEASURE COST(i) which
returnsci(ni). As a first approach we will present an algorithm
that makes use of this primitive, subsequently showing how
we can implement a similar effect by purely relying on the
primitive MEASURE LOAD(i).

Finally, each agent maintains a variablechannel which
determines the channel currently used.

IV. L OAD BALANCING ALGORITHMS

A. The Utility-Aware Scenario

In this section, we assume that MEASURE COST() can be
applied to any channel. Consider an agent currently using
channeli. At intervals, this agent performs two steps. First,
it determines the vectorn using MEASURE LOAD() and then
randomly samples another agent. Now, the agent compares its
own cost with the cost of channelj used by the sampled agent.
If cj < ci, it migrates towards this channel with probability
ci − cj. Pseudocode of algorithm COMPARE AND BALANCE

is given in Algorithm 1.

Algorithm 1 COMPARE AND BALANCE

for all balls in paralleldo
c← MEASURE COST(channel)
for all channelsi ∈ [m] do

ni ← MEASURE LOAD(i)
end for
n←

∑

i∈[m] ni

choosej randomly withP [j] = nj/n
c′ ← MEASURE COST(j)
if c′ < c then

with probability c− c′: channel← j
end if

end for

At first sight, this algorithm might look counterintuitive.
The probability of a channel being sampled increases with the
number of agents already utilizing it. This seems to contradict
the actual goal of balancing the load. However, there are
fundamental theoretical reasons for this approach.

Intuitively, the reason for sampling other agents is that we
take the observation that many agents utilize a channel as an
indicator that this channel has a high utility. To make that more

precise, assume, for the time being, that our algorithm knew
an assignmentn∗ at a Nash equilibrium in advance. In that
case, it would be optimal to sample channeli with probability
n∗

i /n since this would yield a Nash equilibrium within one
round in expectation. Sincen∗ is, in general, not known in
advance, we must find an estimator for it. Suppose that cost
functions are linear, i. e.,ci(ni) = ni/si where we envision
the parametersi as thespeedof channeli. Since at a Nash
equilibrium, the values ofci(ni) are approximately equal,n∗

i

is approximately proportional tosi which suggests to sample
channels proportionally to their speed. In fact, this technique
has been successfully applied in [18] in a discrete model, and
in [19], [20] in a continuous model. However, the value of
si may not be known, or it may not even exist for nonlinear
cost functions. In this case, we may useni as an estimator for
n∗

i . This estimator becomes better and better quickly as the
system approaches a balanced state.

There is a second reason, why load proportional sampling
is useful. Assume that we sample channels with some static
probability which does not depend on its current load or utility.
Then, there exists a channel which has sampling probabilityat
most1/m. For this reason, any bound on the time to reach or
even approximate a Nash equilibrium must be at least linear
in m, since any ball may need expected time at leastm to
find a better channel. This is proven in precise way in [20].

B. The Utility-Unaware Scenario

In the preceding section we have used the primitive MEA-
SURE COST(j) in order to estimate the utility of the sampled
channelj. We now assume that this primitive can only be
applied to the channel currently used by the agent. Instead
of comparing the utilities of two channels, the behavior of the
following algorithm depends only on the utility of the currently
used channel. At intervals, an agent observes its own costci

and decides to move to another channel with a probability that
increases withci. Again, the target channel is sampled propor-
tionally to ni. The algorithm, called AVOID CONTENTION, is
specified in pseudocode in Algorithm 2.

Algorithm 2 AVOID CONTENTION

for all balls in paralleldo
c← MEASURE COST(channel)
measure own costc
with probability c:
for all channelsi ∈ [m] do

ni ← MEASURE LOAD(i)
end for
n←

∑

i∈[m] ni

choosej ∈ [m] randomly whereP [j] = nj/n
channel← j

end for

Compared to algorithm COMPARE AND BALANCE, algo-
rithm AVOID CONTENTION is more energy efficient. Not only
does it refrain from invoking MEASURE COST on channels
other than the one currently used, also the measurement of



n by the primitive MEASURE LOAD is executed only when
the decision to switch to a new channel has already been
made. In COMPARE AND BALANCE this measurement must
be executed as the first step in each round.

The energy efficiency of the second algorithm comes at
some cost. Whereas algorithm COMPARE AND BALANCE

certainly stabilizes as soon as a Nash equilibrium is reached,
algorithm AVOID CONTENTION does not. At a Nash equi-
librium, there will still be some fluctuations. However, the
expected load vector that results from one round starting ata
Nash equilibrium is at a Nash equilibrium again. To see this,
consider a load vectorn. Since any ball in binj migrates to
bin i with probability cj(nj) · ni/n, the expected loadn′

i of
any channeli after one step is

E [n′

i] = ni − ni · ci(ni) +
∑

j∈[m]

nj · cj(nj) ·
ni

n

= ni − ni · ci(ni) + ni · C(n) (1)

= ni .

The latter equality holds since at a Nash equilibrium,ci(ni) =
C(n) (or ni = 0). It is easy to check that this property is
not preserved if the sampling probabilities used by algorithm
AVOID CONTENTION are modified.

Let us remark that for both algorithms, once we haveni = 0
for some bini, the sampling probability for bini is zero,
and hence the bin will stay empty. This problem can be
easily avoided, e. g., by adding one virtual agent to every bin,
i. e., to use a load vectorn′ with n′

i = ni + 1. The event
of a bin becoming empty, however, is so improbable that it
never occurred during our simulations. We therefore omit this
modification from our description and simulations for clarity.

V. A NALYSIS IN THE FLUID L IMIT

Let us consider the two algorithms described above for the
case that the number of usersn→∞, the so-called fluid limit.
Rather than considering the number of ballsni in bin i we now
consider the fractionxi = ni/n of balls in bini. By the law of
large numbers, asn→∞, we identify random variables with
their expectation. The cost functionsci(·) generalize naturally
in this model by extending their domain to the interval[0, 1].
We consider the time derivativėxi at which the fraction of
balls in bin i changes. For algorithm AVOID CONTENTION

we have seen in Equation (1) that

ẋi = xi · (C(x) − ci(xi)) .

What about algorithm COMPARE AND BALANCE? Here, the
probability to migrate from a channeli to a channelj with

cj < ci is nj/n · (ci(ni)− cj(nj)). In the fluid limit,

ẋi =
∑

j:cj(xj)>ci(xi)

xj · xi · (cj(xi)− ci(xi))

−
∑

j:cj(xj)<ci(xi)

xi · xj · (ci(xi)− cj(xj))

=
∑

j∈[m]

xj · xi · (cj(xi)− ci(xi))

= xi · (C(x) − ci(xi)) .

Interestingly, we obtain the same expression forẋi for both
algorithms in the fluid limit.

In [19] it is shown that this dynamics converges towards a
Nash equilibrium and reaches a state in which at most anǫ-
fraction of the agents differs by more than anǫ-fraction from
the average cost in time

O

(

1

ǫ3
· log

(

maxx C(x)

minx C(x)

))

.

In [21], [20] this analysis is improved by taking into account
the fact that information may be out of date by the time
it is used. Thus, due to concurrent action of the agents,
overshooting and oscillation effects may occur. Still, it can
be shown that convergence can be guaranteed if the policy is
executed slowly enough.

VI. SIMULATION

Analyses of these algorithms in the fluid limit are somewhat
optimistic since the fact that the number of agents is finite
introduces effects that are not present in the fluid limit.
Berenbrinket al. [22] analyze a similar algorithm in a discrete
round based model with identical linear cost functions. For
this special case, their analysis yields an upper bound of
O

(

log log n + m4
)

rounds to reach a Nash equilibrium.

A. Convergence

Simulations show, that also for other cost functions, the
algorithms presented above converge very quickly. We have
performed simulations of both algorithms forn = 500 and
m = 10 using both linear and exponential cost functions. We
have performed a series of10, 000 runs for each combination
of algorithm and cost function type. Each run starts with a
random assignment of agents to channels and consists of 15
iterations. The parametersai of the cost functionsci(ni) =
ai ·ni andci(ni) = ai ·exp(ni ·(m/n)) were chosen uniformly
at random from the interval[1, 10]. For each iteration, we
considered the random variablesCc andCa whereCc is the
cost of a channel chosen uniformly at random andCa is the
cost experienced by an agent chosen uniformly at random.
We use the standard deviation of these random variables as a
measure of the balancedness of the system.

Figure 1 shows how the standard deviation (after nor-
malizing the expectation to be1) decreases over time. We
see that the minimum standard deviation is reached after
as little as 6 rounds for both algorithms. As we expected,
algorithm COMPARE AND BALANCE comes close to a Nash
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Fig. 1. Relative standard deviation of the cost values for the algorithms
COMPARE AND BALANCE and AVOID CONTENTION.

equilibrium. The deviation from the average cost decreasesto
below 6%. As we expected, algorithm AVOID CONTENTION

performs worse. The expected deviation from the average cost
decreases only to around25%. This, however, is still by a
factor of more than2 better than the deviation of the random
initial assignment.

Our simulations also suggest that the behavior of the algo-
rithms is largely independent of the class of cost functions.

B. Dependence on Number of Users

The approximation quality achieved by algorithm
AVOID CONTENTION depends on the number of users
in the system. As the number of users increases, the number
of users utilizing a particular channel becomes more and
more concentrated around its expectation. This is illustrated
in Figure 2.

Again, we have performed1, 000 runs with m = 10 and
n varying between10 and250, i. e., the number of users per
channel varying between1 and25. We see that, asn increases,
the relative deviation from the average cost decreases.

C. Observation Under Uncertainty

In the previous section we have assumed that the primitives
MEASURE LOAD(i) and MEASURE COST(i) return the exact
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Fig. 2. Relative standard deviation after 10 rounds depending on the number
of users.

load and cost of the given bin. We now assume that load
and cost are observed under the influence of uncertainty.
More precisely, we assume that the above primitives return
a value that is drawn uniformly at random from the interval
[(1 − η) · x, (1 + η) · x] where x is the true value (ni or
ci(ni), respectively) andη is the error parameter which we
vary between0 and1. For each value ofη we perform three
times1, 000 simulations adding uncertainty either to load, cost,
or both parameters.

Figure 3 shows the results of our simulations. The plots
show the relative deviation from the average cost after 10
rounds of the algorithm. We see that the average deviation
from the average cost achieved by both algorithms increases
linearly with the amount of uncertainty under which cost is
observed. This is hardly surprising since we cannot expect an
algorithm to achieve an amount of balancedness that is beyond
what can be observed by the agents.

To determine the correlation between the amount of uncer-
tainty and the balancedness achieved by the algorithms, let
d(η) denote the average deviation from the average cost after
10 rounds if the costci(ni) is observed under the influence of
uncertainty with parameterη as described above. Then, using
a least-squares regression forη ∈ [0.5, 1], we obtain

dAC(η) ≈ 0.520 · η + 0.079

for algorithm AVOID CONTENTION and

dCAB(η) ≈ 0.569 · η + 0.021

for algorithm COMPARE AND BALANCE. Comparing these
expressions we see that algorithm AVOID CONTENTION is
even slightly less sensitive to uncertainty than algorithm
COMPARE AND BALANCE is.

Our simulations suggest that, in contrast to observing cost
with uncertainty, observing load with uncertainty does not
have any influence on the behavior of the algorithms at all.
After having stressed the importance of sampling channels
proportionally to their load, this is, at first sight, surprising.
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Fig. 3. Relative standard deviation after 10 rounds if cost and/or load are
observed under the influence of error.

There is, however, a simple explanation for this. Though
observing the value ofni with uncertainty adds an additional
amount of randomness to our algorithm, the expected number
of agents that sample a particular channel does not change
due to this effect, since underestimatingni is as probable as
overestimating it by the same amount.

We consider the results of these simulations in a simplified
model to be very encouraging for the implementation of load-
adaptive channel allocation algorithms. Note that algorithm
AVOID CONTENTION relies only on the observation of the
cost (e. g. bandwidth) of its own channel. This value can be
observed easily without any uncertainty. It is harder to obtain
estimates for the values ofni for the other channels, but
we have seen that a very coarse estimate suffices as long as
underestimation is as probable as overestimation.

VII. C ONCLUSIONS

We have studied in this paper the secondary user chan-
nel allocation subject to selfish load balancing game-
theoretical approach, and designed two algorithms COM-
PARE AND BALANCE and AVOID CONTENTION to reach an
equilibrium solution. We have shown that the algorithms
converge very fast and that the uncertainty of the channel load

in the sampling process does not have any severe influence
on the performance of the algorithms. Furthermore the results
show that the convergence behaviour of the algorithm is
independent of tested utility function type. The presented
system is admittedly a simplified one, but we have made it
simple but realistic enough to underline the algorithm designs
and to analyze their convergence properties. We consider the
simulation results very encouraging for the implementation
of a load balancing adaptive channel assignment solution and
testing it to a more complex system model.
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[21] S. Fischer and B. Vöcking, “Adaptive routing with stale information,”
in Proc. 24th Ann. ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (PODC), M. K. Aguilera and J. Aspnes, Eds.
Las Vegas, NV, USA: ACM, July 2005, pp. 276–283.

[22] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg, Z. Hu, and
R. Martin, “Distributed selfish load balancing,” inProc. 17th Ann. ACM–
SIAM Symp. on Discrete Algorithms (SODA), 2006.


