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Abstract— The problem of channel allocation has been exten- becomes very dynamic. In fact, Mahtnen and Petrova [13]

sively studied in the context of cellular networks. There isa have noted that both the first and second problem maybe open

substantial amount of work in the field of dynamic frequency to flash crowdeffects in certain circumstances
gssignmgent for WLANs and r_nesh networks as well. The g_r_owing hi dd h bl ¢ ) lecti
interest in the cognitive radio technology and its capabily to This paper addresses the problem of frequency selection

offer more efficient spectrum usage brought this problem bak as by secondary users in a CR environment. The goal is to
one of the most popular research topics nowadays. In this pa&  minimize the interference level and maximize the throughpu
¥Ve pr:ese_nt t""ﬁ q”'tel simple to_u_mplen;_ent, distributed a'%?“hngs for each individual user without damaging the performarfce o
or se ectlng channels, In COgnItIVG radio environment, sthat the . . .
load is distributed (smoothed) over them. the other users. We present two simple algorithms to ach|ev§
load balancing among the channels for the secondary users in
l. INTRODUCTION quite general framework_. T_he alggrithms are sampling based
N _ _ _ and as such reach equilibrium quite fast.

Cogpnitive radio (CR) technology is emerging as an oppor- The naper is organized as follows. In section Il we describe
tunity to enable dynamic and real-time spectrum access. Th& system model. Section Ill and IV we give an overview of
cognitive radio paradigm was originally introduced by Miyg |9ad balancing algorithms that we are using for adaptive
tola [1]. Cogpnitive radios can determine the best-possémio  hanne| allocation. Section VI presents our simulationltes

settings, through a learning process using the envirormhentj ohservations. finally in section VIl we conclude our pape
stimuli. This enables the radio to achieve optimal perfaroga

objectives. CRs offer an advanced spectrum management
capability and are currently extensively studied as a smiut Il. SYSTEM MODEL
to enhance spectrum utilization.

The problem of channel allocation in wireless networks has We consider the following system model. We are given
been an interesting research topic for long time now. A lard&lls (@gentswith a cognitive radio capability) and: bins
number of solutions have been suggested for the cellular nghannels or frequencies). For simplicity, we assume that a
works and WLANSs. Techniques such as simulated annealiiglls have equal size, i.e., all users impose the same traffic
graph colouring, neural networks and tabu search has béead to the system and they use the same radio technology
considered [2], [3], [4], [5]. An excellent review on varipu for communication, e.g., WLAN (802.11b/g). Each radio is
solutions for frequency assignment in cellular networks @&ssigned with a frequency, and denotes théoad of channel
given in [6]. Similarly, there are number of solutions, botli i-€., the number of balls that select bine [m]. Since
centralized and distributed, addressing the frequenogation We assume that agents are indistinguishable, the system can
problem in WLANS [7], [8], [9]. be fully described by the state vectar = (n;);c[m). The

Recently, efforts have been made to model the opportunis%ua| traffic load is selected to keep our discussion simple.
spectrum access and solve the channel allocation in a eagnit! Ne presented solution will also work with unequal loads.
radio environment using a game theoretical approach, §8e [1 Each bini has an individual capacity boung which
[11], [12] as examples. We believe that there are, in fadf)ay or may not be elastic. We consider only systems with
two separate channel allocation problems related to degnitelastic capacity boundaries such as CDMA (Code Division
radio networks. First and the obvious one is the much studibtiltiple Access). Systems with fixed capacity boundariehsu
problem for the secondary users to detect spectrum oppor@§-TDMA (Time Division Multiple Access) are not considered
nities that are opened by the non-transmitting primary sisehere.

In this case, the secondary users need to find out the spectrurihe ball should decide if it is staying in the bin or
opportunities and decide how to use them. Second, therecignging the bin based on the objective to achieve the best
a problem how secondary users should chose between plossible performance. It should be noted that the balls have
available channels. This is, of course, a sort of load batgnc a Poissonian living-time. It can happen that new balls @)ser
or resource allocation problem, which can be quite difficutome into the system and try to acquire a channel. This means
to solve if there is no central authority and the environmettiat there will be fluctuations of the number of ballén time.



Each bini € [m] is associated with &ost functiof ¢; :
N — Rf{. The value ofc;(n;) specifies the cost incurred to
all balls choosing biri. For the cost function we may choose
any of the utilities described below with the conventionttha

2) Utility 2: Maximize throughput.

Maximizing the
throughput is tightly related to minimizing interference.
In case of a stochastic MAC less balls will lead both to
a minimized interference and maximized throughput.

users aim at minimizing these values, as is the case, erg., fo3) Utility 3: Minimize Latency. This may be a valid

latency. If the utility is any quantity which is to be maxirett,
e.g., throughput, then we can model cost as its reciprocal. W

selection criterion for time-sensitive applications like
streaming or voice calls.

normalize the scale at which we measure cost, such that they this paper we consider the throughput maximization as
maximum value of any; is 1 and the minimum value i8. 3 ytjlity function using two different MAC protocols, nanyel
Let . slotted-ALOHA and CSMA/CA as example cases.
Z — - ci(ng) The slotted ALOHA [16] is a well-known extension of the
icm) pure ALOHA where the users are allowed to transmit only at

. the beginning of the slot. The maximum throughput that can
denote the average cost sustained by the agents. The nayal -hieved iss — Ge—C where thed is an offered load. It

question to ask in this case is: What are the balanced stal§ g be noted that in our case all the users offer the same
in this model? A ball has an incentive to migrate from it§yqynt of traffic load according to a same Poisson process.
current bin to_another bin if, it gains more utility by doing.s In order to consider CSMA/CA and to have a functional
We can consider a staie to be stable, if no agent has suchy iy for the utility, we have used the well-known Bianchi's
an incentive. This notion is formalized by the concept ofiNas, v tical model for the saturation throughput of IEEE 8a2.
equilibria. o _ DCF systems. We refer the reader to look details from [17],
Definition 1 (Nash equilibrium)A state n is at aNash \ypere the complex derivation is well described. The furaio
equilibrium if for all machinesi andj with »; > 0 it holds  tqrm has been used to test our game model, but the detailed
thatc;(n;) < c;j(n; +1). parameter values are not used. This is due to fact that the
Due to a potential function argument [14], pure Nash equianctional forms of cost functions are, in our case, a defjnin
libria do always exist in this model, even if balls have diffet  factor for the performance of the algorithm, and the specific
weights [15]. Our goal is the design of distributed algarith \gjyes of different multipliers do not affect the convergen
by which balls can attain such an equilibrium in an exact ¢jroperties. We omit the detailed description of the Bianchi

in an approximate sense quickly. One should note that Naghproximation equations due to space limitation.
equilibria do not necessarily optimize the overall perfanoe

of the system, but they have the appealing property of being
fair from a local point of view, thus ensuring stability.
Before defining the utility functions for the balls in a siag|

C(n) =

Ill. COMPUTATION MODEL

In the following, we will present two algorithms that sayisf
the properties which we believe are crucial for the impletaen

bin V\;ev\\//v ll first name tstﬁvergl assgr?ptlorr: N Wel .tatkefm.to Afion of real-world load adaptive channel allocation altfuris
count. We assume that there is no inter-channel interferenc . " 4.entralized manner.

the system. This means that the effect of overlapping cHanne : .
is neglected. Furthermore the balls have the capability to* Local control. Algorithms are executed locally by wire-
less devices. They do not rely on central coordination

sample the number of balls; in a certain bin. Generally ) -
speaking it is very difficult to know how many radios are using ~ PY & base station or any selected node which takes the
role of a leader or coordinator. In particular, they do not

the same frequency in the IEEE 802.11 case for example. 4
We are of course able to measure radiation power and by rely on the assumption that other nodes execute the same
algorithm.

making an educated guess estimate the This is only a ) . . .
Local information.Algorithms may rely exclusively on

weak assumption, as we will be showing in this paper that the® | X ;
precise knowledge is not necessary for our distributed ilan ![nformatloln which they are able to gather or sense au-
onomously.

allocation algorithm. inlic ] d he individual nod
We can now define general utilities that can be used as & $|mp|0|ty.Computat|on exeche at the individual nodes
is simple and stateless. This ensures that nodes can

goal to play the game and come up to a algorithmic solution > . .
for adaptive frequency allocation. join and leave the network at any time without re-

. L , L initialization.
1) Utility 1: Minimize interference. The goal is to minimize Efficiency. Energy consumptions should be reduced to
the number of balls per bin. In a more complicated  inimum.

case when an inter-channel interference is considered
we should minimize the number of; in a single bin
but also in the neigbouring — 1) and (i + 1) bins.

Selfishnessin order to be sure that our protocols are
accepted by the users, they must strive to maximize their
own utility rather than the overall system utility.

In general, we assume that an agent using chahman
easily determine its own cost(n;) (e.9., by measuring its
throughput). As mentioned before, we assume that CRs can

1in this paper we mostly use terms utility and cost intercleabty. In the
game theoretical concepts and algoritm description we sirgjuihe term cost
function, however, the networking community is often usirijty function.



estimate, by scanning the spectrum, the number of agemig ugirecise, assume, for the time being, that our algorithm knew

each channel. To that end, we provide our algorithms with
primitive MEASURE.LOAD(¢) which returns the value of;.

am assignmenh* at a Nash equilibrium in advance. In that
case, it would be optimal to sample chanhelith probability

We will also take into account that this value may be observed /n since this would yield a Nash equilibrium within one

under the influence of uncertainty.

To decide whether or not an agent should switch from i
current channel to another, it would be helpful to know thie ut
ity of the candidate destination channel. Though thistytdan

round in expectation. Sinca* is, in general, not known in
tlvance, we must find an estimator for it. Suppose that cost
functions are linear, i.eg;(n;) = n;/s; where we envision
the parametes; as thespeedof channeli. Since at a Nash

be measured by migrating to this channel on a trial basi$) stequilibrium, the values of;(n;) are approximately equat,

a test may be prohibitively expensive. Alternatively, thB C

is approximately proportional te; which suggests to sample

may decode packet headers on the target channel to estinthi@nnels proportionally to their speed. In fact, this téghe
the utility perceived by agents currently using this channéhas been successfully applied in [18] in a discrete model, an

Independent of a particular implementation, we provide o
algorithms with a second primitive BASURE.COST(z) which

im [19], [20] in a continuous model. However, the value of
s; may not be known, or it may not even exist for nonlinear

returnse; (n;). As a first approach we will present an algorithntost functions. In this case, we may usgeas an estimator for
that makes use of this primitive, subsequently showing howf. This estimator becomes better and better quickly as the

we can implement a similar effect by purely relying on th
primitive MEASURE_L OAD(3).

Finally, each agent maintains a variahleannel which
determines the channel currently used.

IV. LOAD BALANCING ALGORITHMS
A. The Utility-Aware Scenario

In this section, we assume thatBSURE.COST() can be
applied to any channel. Consider an agent currently usi

eystem approaches a balanced state.

There is a second reason, why load proportional sampling
is useful. Assume that we sample channels with some static
probability which does not depend on its current load oitutil
Then, there exists a channel which has sampling probahility
most1/m. For this reason, any bound on the time to reach or
even approximate a Nash equilibrium must be at least linear
in m, since any ball may need expected time at leasto

ﬂad a better channel. This is proven in precise way in [20].

channeli. At intervals, this agent performs two steps. FirsB. The Utility-Unaware Scenario

it determines the vectat using MEASURE LOAD() and then

In the preceding section we have used the primitiveAv

randomly samples another agent. Now, the agent comparessifixe CosT(;) in order to estimate the utility of the sampled

own cost with the cost of channglused by the sampled agent

channelj. We now assume that this primitive can only be

If ¢; < ¢, it migrates towards this channel with probabilityypplied to the channel currently used by the agent. Instead

¢; — ¢;. Pseudocode of algorithmd®PARE.AND_BALANCE
is given in Algorithm 1.

Algorithm 1 COMPARE_.AND_BALANCE
for all balls in paralleldo
¢ «— MEASURE_COST(channel)
for all channels € [m] do
n; «— MEASURE.LOAD(%)
end for
n= D i im i
choosej randomly withP [j] = n;/n
¢’ — MEASURE.COST(j)
if ¢/ < cthen
with probability c — ¢’: channel «— j
end if
end for

At first sight, this algorithm might look counterintuitive.

The probability of a channel being sampled increases wih th

number of agents already utilizing it. This seems to corittad

of comparing the utilities of two channels, the behaviortaf t
following algorithm depends only on the utility of the cumiky
used channel. At intervals, an agent observes its own Gost
and decides to move to another channel with a probabilitly tha
increases witle;. Again, the target channel is sampled propor-
tionally to n;. The algorithm, called ¥0ID_CONTENTION, is
specified in pseudocode in Algorithm 2.

Algorithm 2 AvoID_CONTENTION
for all balls in paralleldo
¢ < MEASURE_COST(channel)
measure own cost
with probability c:
for all channels € [m] do
n; «— MEASURE.LOAD(%)
end for
n— Zze[m g
choosej € ﬂm] randomly whereP [j] = n,;/n
channel « j
end for

the actual goal of balancing the load. However, there are

fundamental theoretical reasons for this approach.

Compared to algorithm @WPARE_AND_BALANCE, algo-

Intuitively, the reason for sampling other agents is that wghm Avoib_CONTENTION is more energy efficient. Not only
take the observation that many agents utilize a channel asdmes it refrain from invoking MASURE.COST on channels

indicator that this channel has a high utility. To make thaten

other than the one currently used, also the measurement of



n by the primitive MEASURE.LOAD is executed only when ¢; < ¢; is nj/n - (ci(ni) — ¢j(n;)). In the fluid limit,
the decision to switch to a new channel has already been

made. In ®@ MPARE_.AND_BALANCE this measurement must T = Z zj - @i (cj(@i) — ci(ws))
be executed as the first step in each round. grej(g)>ei(zq)

The energy efficiency of the second algorithm comes at - S miewy - (al@) - ¢lg))
some cost. Whereas algorithmo@PARE_ AND_BALANCE Jiej(xg)<ci(ws)
certa!nly stabilizes as soon as a Nash equilibrium is raac_he _ Z z; - mi - (¢ (i) — i)
algorithm A/OID_CONTENTION does not. At a Nash equi- et
librium, there will still be some fluctuations. However, the .

= 7 (C(x) —ci(z:))

expected load vector that results from one round startira at

Nash equilibrium is at a Nash equilibrium again. To see thigjterestingly, we obtain the same expression #prfor both
consider a load vectat. Since any ball in binj migrates to algorithms in the fluid limit.

bin ¢ with probability c;(n;) - n;/n, the expected load of In [19] it is shown that this dynamics converges towards a
any channef after one step is Nash equilibrium and reaches a state in which at most-an
fraction of the agents differs by more than afraction from

the average cost in time

[n;] n; —n; - ci(n;) jez[;n] n; - cj(ng) n o (l log (maxx C(x)))
= n; —n;-¢(ng) +n; - C(n) (1) €3 miny C'(x)
= n; . In [21], [20] this analysis is improved by taking into accoun

the fact that information may be out of date by the time
. _ o it is used. Thus, due to concurrent action of the agents,
The latter equality holds since at a Nash equilibriunin;) = overshooting and oscillation effects may occur. Still, @nc

C(n) (or n; = 0). It is easy to check that this property ishe shown that convergence can be guaranteed if the policy is
not preserved if the sampling probabilities used by algarit executed slowly enough.

AvOID_CONTENTION are modified.

Let us remark that for both algorithms, once we haye- 0
for some bini, the sampling probability for bin is zero, Analyses of these algorithms in the fluid limit are somewhat
and hence the bin will stay empty. This problem can beptimistic since the fact that the number of agents is finite

easily avoided, e.g., by adding one virtual agent to evemy bintroduces effects that are not present in the fluid limit.
i.e., to use a load vectar’ with n, = n; + 1. The event Berenbrinket al.[22] analyze a similar algorithm in a discrete

of a bin becoming empty, however, Ts so improbable that fieund based model with identical linear cost functions. For
never occurred during our simulations. We therefore onigt thihis special case, their analysis yields an upper bound of
modification from our description and simulations for digri © (loglogn + m*) rounds to reach a Nash equilibrium.

A. Convergence

V1. SIMULATION

Simulations show, that also for other cost functions, the
V. ANALYSIS IN THE FLUID LIMIT algorithms presented above converge very quickly. We have
performed simulations of both algorithms fer = 500 and
) ) ) m = 10 using both linear and exponential cost functions. We
Let us consider the two algorithms described above for the,e performed a series o6, 000 runs for each combination
case that the number of users— co, the so-called fluid limit. ¢ aigorithm and cost function type. Each run starts with a
Rather than considering the number of ballsn bini we now 5n4om assignment of agents to channels and consists of 15
consider the fraction; = ni/n.Of ba}lls in bini. By t_he law 0]‘ iterations. The parameters of the cost functions:;(n;) =
Iarge number;, as — oo, We |der_1t|fy random vgrlables with a;-n; ande;(n:) = a;-exp(n, -(m/n)) were chosen uniformly
their expectation. The cost functiong-) generalize naturally 4t random from the intervall, 10]. For each iteration, we
in this model by extending their domain to the inter{@l1]. considered the random variablés and C, whereC, is the
We C(_)nsi(_aler the time derivativﬁi_at which the fraction of .4st of a channel chosen uniformly at random @hdis the
balls in bini changes. For algorithm VoID_CONTENTION gt experienced by an agent chosen uniformly at random.
we have seen in Equation (1) that We use the standard deviation of these random variables as a
measure of the balancedness of the system.
b=z - (Ox) — i) - F!g_ure 1 shows hqw the standard deviation (after nor-
malizing the expectation to bé) decreases over time. We
see that the minimum standard deviation is reached after
What about algorithm GMPARE_.AND_BALANCE? Here, the as little as 6 rounds for both algorithms. As we expected,
probability to migrate from a channe¢lto a channelj with algorithm GOMPARE_.AND_BALANCE comes close to a Nash
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AvOID_CONTENTION Fig. 2. Relative standard deviation after 10 rounds dependn the number
0.6 of users.
] \ ] T \
linear cost, deviation per bir——
0.5 linear cost, deviation per bal-e-- —
exponential cost, deviation per bin+--- load and cost of the given bin. We now assume that load

0.4 - \exponentlal cost, deviation per balx--_ and cost are observed under the influence of uncertainty.

More precisely, we assume that the above primitives return
[T S 4 a value that is drawn uniformly at random from the interval
0.2+ e - [(1—=mn)- 2z, (1 +mn)-z] wherex is the true value; or
¢i(n;), respectively) and; is the error parameter which we
0.1 7 vary betweer) and 1. For each value ofy we perform three
0 | | | | | | | times1, 000 simulations adding uncertainty either to load, cost,
0 2 4 6 8 10 12 14 or both parameters.
time [rounds] Figure 3 shows the results of our simulations. The plots
show the relative deviation from the average cost after 10

Fig. 1. Relative standard deviation of the cost values fer algorithms rounds of the algorithm. We see that the average deviation
COMPAREAND_BALANCE and A/OID_CONTENTION. from the average cost achieved by both algorithms increases
linearly with the amount of uncertainty under which cost is

equilibrium. The deviation from the average cost decretsesobserved. This is hardly surprising since we cannot expect a
below 6%. As we expected, algorithm®Ip_ConTENTION algorithm to achieve an amount of balancedness that is leyon
performs worse. The expected deviation from the average cséiat can be observed by the agents.

decreases only to arourztb%. This, however, is still by a  TO determine the correlation between the amount of uncer-

factor of more thar2 better than the deviation of the randont@inty and the balancedness achieved by the algorithms, let
initial assignment. d(n) denote the average deviation from the average cost after

Our simulations also suggest that the behavior of the alghf} rounds if the cost;(n;) is observed under the influence of
rithms is largely independent of the class of cost functions Uncertainty with parameter as described above. Then, using
a least-squares regression fpe [0.5, 1], we obtain

0.3

deviation

B. Dependence on Number of Users

The approximation quality achieved by algorithm dac(n) ~0.520 -1 +0.079
AvoID_CONTENTION depends on the number of user
in the system. As the number of users increases, the num
of users utilizing a particular channel becomes more and deap(n) = 0.569 - n + 0.021

more concentrated around its expectation. This is illtetra ) )
in Figure 2. for algorithm GOMPARE_AND_BALANCE. Comparing these

Again, we have performed, 000 runs withm = 10 and expressions we see that algorithnv@AD_CONTENTION is
n varying betweeri0 and 250 7i.e. the number of users perEVen slightly less sensitive to uncertainty than algorithm
channel varying betweenand25. We see that, as increases, COMPAREAAND_BALANCE is.

ogralgorithm A/0ID_CONTENTION and

the relative deviation from the average cost decreases. ‘Our simulations suggest that, in contrast to observing cost
) _ with uncertainty, observing load with uncertainty does not
C. Observation Under Uncertainty have any influence on the behavior of the algorithms at all.

In the previous section we have assumed that the primitivefier having stressed the importance of sampling channels
MEASURE LoAD(:) and MEASURE.COST(4) return the exact proportionally to their load, this is, at first sight, suging.
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in the sampling process does not have any severe influence
on the performance of the algorithms. Furthermore the t&sul
show that the convergence behaviour of the algorithm is
independent of tested utility function type. The presented
system is admittedly a simplified one, but we have made it
simple but realistic enough to underline the algorithm glesi

and to analyze their convergence properties. We consider th
simulation results very encouraging for the implementatio
of a load balancing adaptive channel assignment solutidn an
testing it to a more complex system model.

ACKNOWLEDGEMENT

The authors acknowledge the financial support of DFG
through German UMIC-excellence cluster at the RWTH
Aachen.

REFERENCES

[1] J. Mitola, Cognitive Radio: An Integrated Agent Architecture for Soft

only load--e-- -
both ---+--- '
dap(n) ---- .

-

a2
~
P

Z

Z

(2]

ware Defined Radio Ph.D. Thesis, KTH, 2000.
M. Duque-Anton, D. Kunz, and B. Ruber, “Channel assignméor
cellular radio using simulated annealingEEE Trans. on Vehicular

.
- ©-6-6-06-00--0-0-0-6-6-6 -0 -0 O
P ]

Fig. 3.

0.4 0.6
uncertainty parametey

0.8

Relative standard deviation after 10 rounds if cost/ar load are

observed under the influence of error.

. . . . 8]
There is, however, a simple explanation for this. Though
observing the value of; with uncertainty adds an additional
amount of randomness to our algorithm, the expected numb

Technology vol. 42, pp. 13-21, 1993.

[3] N. Funabiki and Y. Takefuji, “A neural network parallelgarithm for
channel assignment problems in cellular radio networkSEE Trans.
on Vehicular Technologyol. 41, pp. 89-96, 1988.

[4] L. Narayanan, “Channel assignment and graph multicodgt Hand-
book of wireless networks and mobile computipg. 71-94, 2002.

[5] W. Wang and C. K. Rushforth, “An adaptive local-searclyoaithm
for the channel-assignment problem (CAREEE Trans. on Vehicular
Technology vol. 45, pp. 459466, August 1996.

[6] K. Aardal et al., “Model and solution techniques for fuemcy assign-
ment problems, Technical report Dezember 2001.

[7] J. Riihijarvi et al., “Performance evaluation of autatic channel as-

signment mechanism for IEEE 802.11 based on graph colqtiring

Proceedings of IEEE PIMRC, Helsinki, Septem2806.

K. Leung and B. Kim, “Frequency assignment for IEEE 8d2uire-

less networks,"Proc. of IEEE 58th Vech. Tech. Conference Vehicular

Technology Conferenceol. 3, pp. 1422-1426.

F. Gamba, J.-F. Wagen, and D. Rossier, “A simple agesétbeframe-

work for adaptive wlan frequency managemerroc. of MOBICOM

of agents that sample a particular channel does not change september 2003.

due to this effect, since underestimatingis as probable as [10]

overestimating it by the same amount.

We consider the results of these simulations in a simplifiggh)
model to be very encouraging for the implementation of load-
adaptive channel allocation algorithms. Note that alganit
AvoID_CONTENTION relies only on the observation of the
cost (e.g. bandwidth) of its own channel. This value can be
observed easily without any uncertainty. It is harder tcaobt [13]
estimates for the values of; for the other channels, but

L. Berlemann et al., “Spectrum load smoothing for cdigai medium
access in open spectrum,” Proc. of IEEE PIMRC vol. 3, 2005, pp.
1951-1956.

A. Laufner and A. Leshem, “Distributed coordination sgectrum and
the prisoner’s dilemma,” ifProc. IEEE DySPANvol. 1, 2005, pp. 94—
100.

S. H. Wong and I. J. Wassell, “Application of game thetoydistributed
dynamic channel allocationProc. of IEEE Trans. on Vehicular Tech-
nology Conference, Birmingham, AL, USAI. 1, pp. 404-408, 2002.
P. Mahdnen and M. Petrova, “Flash crowds in cognitieglio envi-
ronment: Beware an unpredictable molgubmitted to PIMRC 2007
(available as a technical report)

[12]

we have seen that a very coarse estimate suffices as lon@lélsR. W. Rosenthal, “A class of games possessing puréegiyaNash
underestimation is as probable as overestimation.

We have studied in this paper the secondary user chaj-
nel allocation subject to selfish load balancing gamer,
theoretical approach, and designed two algorithmsme
PARE.AND_BALANCE and A70ID_CONTENTION to reach an
equilibrium solution. We have shown that the algorithm[alg]
converge very fast and that the uncertainty of the chanel lo

VII. CONCLUSIONS

equilibria,” Int. Journal of Game Theorwol. 2, pp. 65-67, 1973.

D. Fotakis et al., “The structure and complexity of Nasjuilibria for

a selfish routing game,” ifProc. 29th Int. EATCS Coll. on Automata,
Languages and Programming (ICALRYlalaga, Spain, 2002, pp. 123-
134.

] A. TanenbaumComputer Networksdth ed. Pearson, 2003.

G. Bianchi, “Performance analysis of the IEEE 802.1dtritbuted coor-
dination function,”IEEE Journal on Selected Areas in Communicatjons
vol. 18, no. 3, March 2000.

E. Even-Dar and Y. Mansour, “Fast convergence of selfesiouting,”

in Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms (SJPDA
2005, pp. 772-781.

[15]



[19] S. Fischer and B. Vdcking, “On the evolution of selfistuting,” in Proc.
12th Ann. European Symp. on Algorithms (ESg€r. Lecture Notes in
Comput. Sci., S. Albers and T. Radzik, Eds., no. 3221. Beriyenway:
Springer-Verlag, September 2004, pp. 323-334.

[20] S. Fischer, H. Racke, and B. Vocking, “Fast convemgeto Wardrop
equilibria by adaptive sampling methods,” fProc. 38th Ann. ACM.
Symp. on Theory of Comput. (STOCPBeattle, WA, USA: ACM, May
2006, pp. 653-662.

[21] S. Fischer and B. Vocking, “Adaptive routing with staihformation,”
in Proc. 24th Ann. ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing (PODC)M. K. Aguilera and J. Aspnes, Eds.
Las Vegas, NV, USA: ACM, July 2005, pp. 276-283.

[22] P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. GoldheZ. Hu, and
R. Martin, “Distributed selfish load balancing,” Proc. 17th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA2D06.



