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Abstract—In this paper we discuss the problem of estimating
aggregate interference in large scale wireless networks. We argue
that the usual approximations assuming uniform distribution
of transmitters can lead into significant approximation errors.
We then show how these approximation errors can be reduced
by adopting a model based approach using spatial statistics of
the actual transmitter distribution as part of the model. The
resulting approach is still very lightweight numerically, and
enables trading off computational complexity to approximation
accuracy in a flexible manner. The developed methodology is
general, and can be used for aggregate interference estimation
both within individual wireless networks, and also between two
or more wireless communication systems.

I. INTRODUCTION

Aggregate interference plays a key role in a number of
resource management and optimization problems in wireless
networks. There has been especially strong interest towards
development of improved models of aggregate interference in
the dynamic spectrum access (DSA) research community (see,
for example, [1]–[5]). This is because most of the early work
on DSA focused on interference management between primary
and secondary systems assuming single active interference
source, or concentrated on aggregate allowable interference
from the primary system perspective only, which is obviously
not sufficient for most applications. This leads to the question
how multiple active secondary users distributed over larger
spatial areas interfere with the primary system, which has been
the focus of the aforementioned research.

Most of the existing work on aggregate interference es-
timation has assumed that the transmitters are uniformly
distributed either over whole space, or outside some exclusion
region in which transmissions are not allowed. For transmitters
sufficiently far away from the point at which interference is
to be estimated this is usually a very good approximation,
provided that the overall density of interferers is properly
chosen. However, the assumption of uniform distribution can
lead to significant approximation errors when the distance to
the point of interest is similar to typical distances between
transmitters.

The origin of this approximation error can be easily un-
derstood using a cellular network like deployment as an
example. At a point near the base station, due to the planned
structure of the network, likelihood of being close to another
base station is very small or non-existent. Nevertheless, in
the uniform approximation there is a significant probability

of one or more additional transmitters being nearby. This
results in much higher variability of interference in the model
than would occur in an actual deployment. For user deployed
networks, such as femtocells, the approximation error usually
goes another way around. Transmitters tend to be deployed
in large clusters (such as apartment buildings), so being near
to one transmitter implies that one is almost certainly near
to other transmitters as well [6]. Again, the use of uniform
approximation can easily lead into a significant approximation
error.

In this paper we propose a model based approach for
aggregate interference estimation. We use techniques from
spatial statistics [7], [8] to construct a probabilistic model
of the transmitter location distribution. From this model, we
then approximate the contribution of the nearby transmitters
to the aggregate interference distribution, and add to this the
contribution from the far away transmitters using the uniform
assumption. Our approach is a combination of analytical
and numerical techniques, since for non-uniform transmit-
ter distributions analytically tractable solutions are typically
available only in asymptotic regimes not of interest here. We
also discuss the conditions indicating when this is formally
allowed.

The rest of this paper is structured as follows. In Section II
we give a concise overview of those aspects of spatial statistics
needed for our approximation of aggregate interference. Then
in Section III we show through a small case study the improve-
ment our approach brings to the usual uniform transmitter
distribution approach. Finally, we draw the conclusions and
outline future work in Section IV.

II. SPATIAL STATISTICS OF POINT PROCESSES

The mathematical framework for modeling and reasoning
about transmitter locations is that of point processes [9], [10].
A point process can be thought of as a random variable, each
realization of which yields a pattern of transmitters in a given
region. We will give in the following a concise summary of
the basic definitions underlying point process theory, to the
extent needed for our particular application.

We consider some compact region W ⊂ R2 over which
our transmitter distributions will be defined. Formally a point
process N is now a random counting measure on W . This
means that for each sufficiently regular (technically, measur-
able) subregion A ⊂ W , N(A) is an integer-valued random



Fig. 1. Realizations of the Geyer saturation process with γ = 0, γ = 0.25
(top panels), γ = 0.75 and γ = 1 (bottom panels).

variable counting the number of points or node locations
within A. The joint probability distributions of N(Ak) for
different regions Ak ⊆ W serve to define the point process
completely. The simplest example is given by the uniform
assumption mentioned in the introduction. Technically, a point
process Nλ is said to be a homogeneous Poisson point process
of intensity λ, if Nλ(A) is Poisson with parameter λ|A|, where
|A| is the area of A, and Nλ(A) and Nλ(B) are independent
for any disjoint A and B. This results in locations that are
uniformly distributed in W , and are independent of each other.

We can specify more complex point process models by
defining a density function with respect to the distribution of
a Poisson point process, usually further chosen to have λ = 1.
Such a density is defined on the space of counting measures on
W , and in essence quantifies how much more or less likely
a given pattern of node locations is to occur in the model
compared to the Poisson case. We have shown in [8] that the
Geyer saturation process [11], a generalisation of the Strauss
process [10], yields very good fits for a wide variety of data
sets on transmitter locations. For the Strauss process we have
the density

f(N) = αβ#(N)γsr(N), (1)

where sr(N) is the number of point pairs of N that are closer
than distance r apart. For the Geyer process an additional
saturation threshold ζ is added, bounding the contribution
of the exponent of γ. The case ζ → ∞ yields the Strauss
process as a limit. Especially the parameter γ has an intuitive
interpretation. If γ = 0, the likelihood of a point pattern
arising with any pair of points closer than distance r apart
becomes zero. Therefore, the process becomes an example of

a pure hard-core process. As γ is increased, close by point
pairs become possible, but are still less likely to occur than
for the Poisson case. Finally, γ = 1 yields the Poisson point
process as a limit. Increasing γ further will then yield clustered
distributions, as discussed for the user deployed networks case
in the introduction. Figure 1 shows example realizations of
the Geyer process for different values of the parameter γ. The
increased regularity in the structure of the point process as γ
is reduced is clearly visible.

Various statistics can be defined on point processes, suc-
cinctly characterizing different aspects of them. For our pur-
poses here, the most important ones are nearest neighbor
distances. For a point process N , the nearest neighbor distance
distribution function GN (r) is defined as the cumulative
distribution function of the distance from a randomly selected
point of N to its nearest neighbor. In the Poisson point process
case this can be explicitly computed as

G(r) = 1− exp(−λπr2). (2)

For the general case of Gibbs process with density f , ad-
ditional definitions are needed. We define the Papangelou
conditional intensity [12] by

λ∗(x,N) ≡ f(N ∪ x)
f(N)

(3)

for points x /∈ N , and by

λ∗(x,N) ≡ f(N)
f(N − x)

(4)

otherwise. Then the intensity of N , giving the average number
of points over unit area, becomes λN ≡ E {λ∗(x,N)}, and
the nearest neighbor distance distribution function is given by

G(r) =
1
λ

E {λ∗(0, N)1[N(B(0, r)) 6= 0]} , (5)

where 1[ · ] is the indicator function [12]. We denote the kth
order analogs of GN (r) by G

[k]
N (r), with G

[1]
N (r) ≡ GN (r).

These are the cumulative distribution functions for kth nearest
neighbor distances. Finally, we define the second order product
density of N by

ρN (x, y) ≡ E {λ∗(x,N)λ(y,N ∪ {x})} . (6)

This essentially measures the likelihood of there being a node
at y given that there is a node at x.

Higher order nearest neighbor distance distributions func-
tions are known explicitly for a number of simple point process
models, see, for example, [13] and [14] for discussion and
references.

III. AGGREGATE INTERFERENCE FROM
ORDER STATISTICS OF NEIGHBOR DISTANCES

We begin by discussing the influence of the transmitter
distribution on the dominant components of aggregate in-
terference. Figure 2 shows the distribution of interference
power from nearest neighboring transmitter, measured at the
proximity of a randomly selected transmitter, for both the uni-
formly random (Poisson) case, as well as for the Geyer model
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Fig. 2. Distribution of nearest-neighbor interference for Poisson (left) and the fitted Geyer (right) models of same density.
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Fig. 3. Distributions G[k](r) of the kth nearest-neighbor distances for Poisson (left) and the fitted Geyer (right) models of the same density. The three
horizontal lines of the box correspond to the median and the 25% and 75% quantiles of the data, with the whiskers giving the data point at most 1.5 times
the interquartile range from the edge of the box.

fitted to the Wi-Fi network structure given in [8]. The impact
of the regularity captured well by the Geyer model is very
clear. The adoption of the Poisson model as an approximation
would lead into both overestimating the interference caused,
and overestimating the variability of the nearest neighbor
interference. The figure was obtained assuming transmit power
of 1 W, using the Xia-Bertoni propagation model [15] defined
for a given frequency f (expressed in GHz) and distance d (in
kilometers) by

L(d) = K +A1 log10 (f) +A2 log10 (d) , (7)

where the constants K, A1 and A2 are taken to have values of
131.1 dB, 21 dB and 37.6 dB, respectively (see [16] for detailed
discussion on the determination of these coefficients for the
chosen propagation model). Operating frequency of 2 GHz
was also assumed. We shall use this simple propagation and
transmitter configuration model throughout in the following.
Additional randomness due to shadowing environment and/or
fast fading can be incorporated to the propagation model
without difficulty.

The simplest way to quantify the differences between the
two models shown in Figure 2, and to extend the discussion



into larger neighborhoods from the nearest neighbor case,
is to study the order statistics G[k]

N (r) for the two models.
Figure 3 shows the estimates of these, obtained from extensive
Monte Carlo simulations (for the Geyer model no analytical
solution exists to the best of our knowledge, making numerical
estimates necessary). Note that for higher k the behavior of
the inter-point distances is quite similar to the nearest neighbor
case discussed above. The Poisson approximation results in
higher variation and underestimation of the mean for small k,
but approximation error does become smaller and smaller as k
becomes large. The latter property is formally a consequence
of the second order product density of the Geyer model tending
to that of a Poisson point process as x and y are taken to be
wide apart.

The convergence of kth nearest neighbour distances sug-
gests a simple approximation scheme for the aggregate inter-
ference. Instead of simulating large network instances from
the node location models, which can become computationally
intensive, we can sample from the (marginal) distance distribu-
tions directly. Therefore, the expected aggregate interference
is approximated as a series

E {I} ≈
N(W )∑
k=1

∫
P (r)dG[k]

N (r), (8)

where P (r) is the received power at distance r computed
using the selected path loss model and transmit power, and
the integral is understood in the Stieltjes sense. Higher order
statistics can be approximated similarly. Interference at other
locations can be likewise estimated by appropriate change of
the distance distribution functions G[k] in (8). For example, at
random locations independent on the structure of N , the order
statistics of the empty space function F (r) can be used [10].

This approximation ignores the potentially complicated joint
component of the distributions, but would be expected to result
in moderately accurate approximation of the leading order
contributions. Further, due to the convergence property of the
second order product density, it should be sufficient to use the
more accurate distributions arising from the Geyer model only
for small values of k, and use the analytically soluble Poisson
inter-point distance distributions or approximate aggregate
interference results directly for higher orders. Formally, we
can therefore write our approximation as

E {I} ≈
O∑
k=1

∫
P (r)dG[k]

N (r) +
N(W )∑
k=O+1

∫
P (r)dG[k]

Poisson(r),

(9)
where O denotes the order of the approximation. As discussed
above, the latter sum can also be replaced with any of the
approximate aggregate interference results from the literature.
Figure 4 shows selected results from these estimates, indicat-
ing that using only the 2–3 lowest order distributions from
the Geyer case suffices for good approximations. Notice that
the figure shows results for interference from a relatively
small neighborhood of eight nodes only, since the given
approximation converges already in that case quite rapidly.
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Fig. 4. Approximating the aggregate interference from eight nearest neigh-
bors in networks with node locations following Geyer saturation model using
order statistics for kth nearest neighbour distances. The actual interference
values are labeled “PPP” for the Poisson approximation, and “True” for the
Geyer case, results for latter obtained using Monte Carlo simulations. “P8”
denotes approximation for the Poisson case using order statistics of distance
distributions only, and “Gk” denotes the approximation introduced in the text,
with order k. Conventions for the box plot are as in Figure 3.

For larger neighborhoods additional interference power from
far away nodes is very well approximated by the Poisson case
and the approximations in the literature can again be used
directly.

This process can be made even more light-weight by ap-
proximating the low-k order distance distributions by suitably
fitted probability distribution functions. Figure 5 illustrates the
results from using the logistic distribution with cumulative
distribution function

F (x) =
1

1 + exp
(
−(x− µ)/s

) (10)

for k ∈ {1, 2, 3} for this purpose, with parameter values ob-
tained by maximum likelihood fitting to the empirical distance
distributions. Despite the simplicity of this approach, we see
from the figure that the maximum approximation error is for
most cases on the order of few dB, and that the Poisson
approximation is rather poor except for the very lowermost tail
of the interference distribution. These results can undoubtedly
be improved further by more careful choice of the distribution
function used in the approximation.

IV. CONCLUSIONS

In this paper we discussed the problem of estimating aggre-
gate interference in wireless networks, making two major con-
tributions. First, we have shown through numerical examples
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Fig. 5. Cumulative distribution function of aggregate interference in Geyer
networks, approximation using logistic distribution for inter-node distances,
and results from approximating the whole network structure by a homoge-
neous Poisson point process.

that the commonly used approach of approximating transmitter
locations with a uniform distribution or a homogeneous Pois-
son point process can result in significant approximation er-
rors. Therefore, great care should be applied whenever model-
ing an arbitrary transmitter distribution with a Poisson process,
especially since large-scale wireless networks are known to
show significant departures from the uniform structure [6], [8].
Second, we proposed a model-based approach for estimating
the distribution of aggregate interference, in which a Gibbs
point process model is fitted to the transmitter distribution,
and the order statistics of the nearest neighbor distances of
the models are used to estimate the contribution of the nearby
transmitters to aggregate interference. Contributions from far
away nodes can still be computed using the prevalent Poisson
assumption without significant loss of accuracy due to the
properties of the used Gibbs models. This results in a scheme
that is lightweight to implement numerically, and can result
in significant improvements in the accuracy of the estimated
interference distribution. We have found that the results are
also relatively insensitive to small changes in the parameters

of the Gibbs process used. This indicates that for practical
applications the relevant distance distribution functions can be
estimated in advance for a small family of models, and the
selection between the models can be then done on-line.
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