Modeling Spatial Structure of
Wireless Communication Networks

Institute for Networked Systems, RWTH Aachen University
Kackertstrasse 9, D-52072 Aachen, Germany
email: {jar, pmg @inets.rwth-aachen.de

Abstract—While modeling and analysis of network topology right abstractions and models for spatial structure of leg®
has been an active area of research in fixed networks, much networks that retains their central structural charasties,

less work has been done towards realistic modeling of wiress ot ;
networks. The graph-based approach that has served as solid but are gen_eral er_lough to enable applications in analysis an
stochastic simulation.

foundation for network science in the fixed domain is not natual : ] o
for wireless communication networks, since their performace In this paper we make a f|r§t attempt at developieajistic
inherently depends on thespatial relationships between nodes. In models of node locations for wireless networks research. We

this paper we apply techniques. from spatial statistics liteature se techniques from stochastic geometry [7], [8] and spatia
to develop models of the spatial structure of the network for iatictics [9], [10] to fit stochastic location models to aigty

a variety of wireless network types. In particular, we constuct . . - .
models of television and radio transmitter distributions that have of data sets, and validate the goodness-of-fit using coiwala

applications in, for example, cognitive wireless network pplica-  Statistics [11]. Spatial statistics techniques have begpiied
tions. We use a stochastic approach based on fitting parametr extensively in a number of fields such as geography, physics

location models to empirical data. Our results indicate thathe so-  and biology to characterize and model spatial structure of
called Geyer saturation model can accurately reproduce the spatial diverse phenomena. However, applications to wireless net-

structure of a large variety of wireless network types, arigng from . . ) .
both planned or chaotic deployments. The resulting modelsan works are almost non-existent in the literature. Stochasti

be used in simulations or as basis of analytical calculatinof geometry on the other hand has been applied extensively
different network properties, and we believe that the presated to wireless networking problems to derive theoretical itasu

methodology can serve as a solid foundation for the emerging on, for example, distribution of interference, typicaltdisces
network science of wireless communication networks. between nodes, or topological structure of the network @nce
simple model for connectivity has been assumed.

The key limitation in this line of work is that usually rather

Key research activity in the context of both wireless angstrictive assumptions, such as uniformly random distidin
fixed networks has been the developmentredlistic and of node locations, are needed for the analytical calcuiatio
validated stochastic models for phenomena relating to those become feasible. This also limits the extent experimenta
networks. Examples of well-developed models are those dfta gathered from the structure of different networks aan b
e.g., wireless channels, mobility and traffic patterns. A-suincorporated into the calculations. For the uniform random
stantially less well developed area is that of modeling thease, basically only the average number of nodes in a given
network structure itself. In the fixed network domain theas h area can be matched to experimental data, and indeed we
been significant activities towards modeling the topologgl a are not aware of any prior work that takes the stochastic
structure of the network in terms of its connectivity sturet geometry approach beyond this. Finally, it should be ndtatl t
(see, for example, [1], [2], [3]), but in wireless networkshe graph-based topology characterization techniquéstve
research where actual node locations play key role much lssgcessfully been applied to fixed networks have been used
has been done. By far the most common assumption still usedanalyze wireless networks as well. However, such arglysi
in both simulation work and analytical calculations is thatan easily lead into highly misleading results. This is due
nodes of a wireless network are uniformly distributed ovédo the fundamental characteristic of wireless commurocest;
some regiory C R2. Some examples of womkot making this which is inherently spatial in nature. Due to factors such
assumption are [4], [5], [6], in which the impact of deviai® as mutual interference, power control, noise, and fluatunati
from uniformity is also discussed. However, even in thosa propagation conditions graph-based representation of a
references the used node location models are motivated owiyeless network often results in a too high level of abgtoac
by having a qualitative difference to the uniform case. Aot By adopting the spatial statistics approach, we seek to
extreme approach has been to use actual node locations fidewelop models that can reproduce key characteristicseof th
existing networks in simulations. This guarantees ceifaial structure of a wireless network, but still have a solid tle¢ioal
of realism, but does not allow general conclusions to be drawfoundation. The modeling of spatial structure of the networ
Thus, from the wireless networking point of view, one oénables also more complex analysis of wireless networks by
the key challenges for network science is to come up wittombining the models developed here with already existing

I. INTRODUCTION



models of propagation, user behavior, interference et@ Ttensity function for the homogeneous Poisson point process
results show that a relatively simple parametric model cafi arbitrary intensityv is simply

accurately match a variety of network types, resulting from
both planned and chaotic deployments. We give a thorough (X) = exp((1 = w)|E[#), @)
introduction to the methodology and underlying theory, anghere X = {X1,...,X,}, with X; € E, and#(X) = n >
then give selected case studies of the fitting process .itsglf

Since we are discussing ongoing work, we also briefly outline The specific model we apply in the following is tiGeyer
our current and future work on studying location modelsaturation process [14], a generalisation of the Strauss pro-

developed considering the network deployment procest, itsgess [15]. For the Strauss process we have the density
and how location models can be applied in problems related to

dynamic spectrum access networks [12]. We believe that the F(X) = ap#X)yorX), )

techniques presented can serve as one foundational compogg,ore s,(X) denotes the number of point pairs &f that
in the developing field of network science, especially Whefya cjoser than distance apart, 3 > 0 and0 < v < 1
dealing with problems in which the spatial structure of the, s for normalization). The Strauss model is powerful tool
network in question plays a central role. _ for modeling regular point processes, in which individual
The rest of the paper is structured as follows. In Section yﬁbints tend to be separated by some minimum distance, but
we give a short overview of theory of point processes, inclugf cannot modelclustered distributions of locations. For the
ing key statistics that can be used in modeling work driven Q?’eyer process an additionsdturation threshold ¢ is added,
experimental data, and selected models. In Section |1l wego bounding the contribution of the exponent of The case
on the problem of fitting a parametric point process model Qn_, ., yie|ds the Strauss process as a limit. The advantage of
empirical data by means of maximum pseudolikelihoods, aggl Geyer process is that it removes the limitatiog v < 1
how the resulting fits can be validated by suitable staéibticy¢ the ‘Strauss process, enabling both clustered (for which
analysis. Examples of fits obtained for actual node Iocatic%n> 1) and regular processes to be modeled. Notice that if
data sets are discussed in Section IV, and future work agd: 1, both the Strauss and Geyer processes reduce to the
applications are given in Section V. Finally, in Section Vhomogeneous Poisson point process.
conclusions are drawn. We shall conclude this section by defining statistics for
point processes used for evaluating goodness of fit in the
following. Due to space reasons we shall be rather brief,
Informally, point processes yield randomly distributed-coand refer the reader to [16] to more detailed discussion and
lections of indistinguishable locationsX;}? ; in some reg- examples. We shall specialize to the cé5e- R, and assume
ular enough regiorf. Both the individual locationsY; € E that NV is stationary, that is, that the structure &f remains
and the total number of points are in general random, butinvariant under translations. Under these conditionsntkan
not independent of each other. Formally, a point processneasure uy(A) = E{N(A)}, yielding the average number
defined as a random counting measie assigning to each of points in A, is simply v|A|, where the constant is the
measurable seft C F a random variableéV(A), the number intensity of N. Using the Euclidean metric we can study

II. NODE LOCATIONS ASPOINT PROCESSES

of points in A [13], [7]. One can always write the cumulative distribution functions of distances to esar
n point of N from an arbitrary point ofE/, or from another

N — Z ex,, (1) point of N. The latter results in theearest neighbor distance

P distribution function G(r), and the former yields thempty

space function F'(r). These can be combined to thefunction

wheree, is a point mass at (the measure equivalent to Dirac, ;.\ = (1_¢ 1-F The interpretation of () is
delta distribution), theX; are E-valued random variables, ands?;np(lg)' \7al(ues a(t:c))\)/{e(one if’lrd)i)(;ate reguIaF;ity and Va|EJTgB/\be

n s al randzm Va”abl.e with vaIuesUm tﬁ'e S?t of eXtendd%e indicate clustering. For the homogeneous Poisson point
natural numbers (i.e., itN U {4+o00}). Usually N is assume process we have(r) — 1.

to be smple, meaning that the pointX; are almost surely The simplest second-order statistic we shall considerds th

distinct. . ) ) Ripley K-function defined heuristically by
The simplest example of a point process is that of the
homogeneous Poisson point process, for which N(A) is Pois- K(r)= lE {#(X NB(z,r)—{z}) | z€ X}, (4
14

son distributed with parameter A|, wherev € R, and |A]

denotes the Lebesgue measuredofin the two-dimensional where B(z,r) denotes the ball of radius centered atz. For
case|A| is simply the area ofd). Additionally, N(A) and homogeneous Poisson point process we havE ia R? that
N(B) are required to be independent for any disjaihtand K (r) = 772, and in generab K (r) is the expected number
B. We can obtain richer models (call€lbbs processes) by of points in B(z,r) for x € X. We shall also use thé-
specifying aprobability density of a point processV, defined function defined byL(r) = /K(r)/m below, since it is
as the Radon-Nikodym derivativé of N with respect to slightly easier to interpret, uniform distribution of Id@mns
homogeneous Point process with= 1. For example, the yielding the straight line.(r) = r. For clustered distributions



of locationsL(r) > r, whereasL(r) < r indicates regularity joo 0%
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to data is the method of maximum likelihood. Unfortunately 8% °

maximum likelihood estimation is in general infeasible or

computationally intensive for point processes, and pskkedo

lihoods are often used instead. This will also be the case in

the following. We focus on Gibbs processes since for thefw. 1. Data set consisting of the access point locationshef Google
pseudolikelihoods can often be explicitly computed, angl tfiountain View Wi-Fi network.

techniques for evaluating the goodness of the fit obtained

are relatively well understood. We thus assume a process 1.25 T
with a parameterised density functigig(X), for which the
Papangelou conditional intensity is defined by 1 -
fo (X U ,T)
Ao(z, X)) = =+ 5 A
for pointsx ¢ X, and by (_5 05 |
fo(X) .
ro(r, X) = ——— 6
o ) fo(X — ) (©) 0.25 A
otherwise. Thdog-pseudolikelihood then becomes
[ L —m—— L b T P IR
log PL(0,X) = > log/\g(xi,X)—/ Xo(z, X) dz. (7) 0 100 2000 300 400 500
E T

x,€X

Finding the extremum olfog PL(0, X)) with respect tod de-
fines then the fitted model with conditional intensikyz, X)
evaluated for the data. This can in turn be used to define tplge

. 2. The estimate of thé-function for the Google Mountain View data
res dual set.

R(B)=#(BNX)— / Mz, X) da (8)
B
with applications in testing the goodness of fit [17], [18heT ~ Figure 1 shows the Wi-Fi access point data set, and Figure 2
actual maximisation of the log-pseudolikelihood can be- pedives the.J-function estimate of the access point locations.
formed using the numerical techniques developed by Bagdefgom theJ-function estimate we can clearly see that the data

and Turner [19] and implemented in [20]. set is fairly regular at short distances, and heavily cheste
at distance scales beyond few hundred meters. This is typica
IV. CASE STUDIES AND EXAMPLE RESULTS in planned deployments, since regularity arises natufaliy

We shall now illustrate the application of the above tectcoverage optimization and interference minimization, rehs
nigues on selected data sets. We shall first consider thescdarge-scale population distribution induces the cluatpréf-
point locations of the Google Mountain View Wi-Fi networkfect. The plot also shows that approximation of the location
which have been made publicly available [21]. Our treatmehy a homogeneous Poisson point process would not be very
of this example will be fairly detailed, outlining the nesasy appropriate at any length scale, so more elaborate models
steps from initial study of the data set to model selectioshould be considered.
fitting and validation. We shall later give results for other First step in the fitting process is to ensure that the assump-
network types as well in a more concise manner. For carryitigns made during the development of the theory are actually
out the calculations involved we use the spatstat softwesatisfied by the data set. In case we seek direct fit for the
suite [20]. location distribution without considering covariatesisas the
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Fig. 5. The estimate of thé, function for the data set together with the
Fig. 3. The kernel density estimate of the intensity of theuktain View envelopes from 200 simulations of the Geyer saturation gg®avith 3 =

5e—06

data set. 3.329 x 1075, v = 0.4112, ¢ = 2 andr = 150 m.
o o oo o © o ©o o o © °
© oo o
°co, %5 0 °% °6 © o o © o © these are regular parameters amenable to fitting, whereas th
°© ° o ° o irregular parameters have to be inferred by other means. For
[0} o o g p y
o ° o ° ° estimatingr, we use theJ-function estimate which peaks
S0l ¢ timat the.J-funct timate which peak
(¢} .
° o o © ° °o o ° o o at roughlyr = 150 m. For the saturation threshafdlower
o o o o o o o values are preferred, since these make the evaluation of the
o © o %o ‘; 6% o o log-pseudolikelihood computationally fast. Thus we first s
°© o o o L °° °, o ¢ = 2 and explore the results of the fit. Maximization of the
. ° o ° °%0.,° 0 o o log-pseudolikelihood resulted with these choices in the fit
o . °© ° . o o B~ 3.329 x 10~° and~ ~ 0.4112, consistent with a regular
° o °© o o "o o point pattern.
(¢} o . . B
° ° o 4 o© o Next step is then to evaluate the goodness of the fit obtained.
o o ° ° o ©°o 0 c; o o o ° o In general there are two approaches we can adopt. First is to
o

study statistics of the original data set compared to thigssta
tics of the obtained model. If the fit is good, key statistiasts
as theK-function should agree on both the data set and the
model. Second approach is to study the residuals of the model
as defined by equation (8). Figure 5 shows thdunction
of the data set compared to the envelopes of iHfeinctions
for 200 realisations of the fitted model obtained by means
underlying population distribution, we should ensure it of Monte Carlo simulations. Numerical methods are required
data set considered is approximately stationary. We do tlsisce no analytical expression for the envelopes is aJailab
by studying the dependency of the intensity of the procekw the Geyer saturation process. Thefunction for the data
by means of kernel density estimate, shown in Figure 4. Tket is clearly well contained within the numerically estieth
figure confirms the expectation that the overall density islmuenvelopes for the model, indicating that the obtained fitfis o
higher in the centre of the area, and thus there is a radmgh quality. We shall confirm this by studying the residuals
non-stationarity in the data. To compensate for this, wél shaf the log-pseudolikelihood. For models featuring intéicats
instead focus on a subset of data point shown in Figure Bgtween points, such as the Geyer process, the appropriate
corresponding to area towards east from the centre in whidlagnostic is the quantile-quantile plot of the residualthw
the overall distribution is clearly close to stationary. envelopes again obtained from numerical simulations [22].
Now that the data set used for fitting is selected, we ne&tjure 6 gives this plot for the data set and fit in question.
to specify the model to be fitted. We shall apply the Geyéygain, very good correspondence with the model and the data
saturation process due to its versatility, and perform the $iet is observed.
by means of maximum pseudolikelihood as discussed aboveWe shall conclude this section by briefly giving Geyer sat-
Recall that the Geyer process has four parameters, thesitytenuration model fits for other types of node location data sets a
parameter3, the interaction parameter, interaction distance well, namely transmitter locations obtained from the lsiag
r, and the saturation threshold (the remaining parameterdatabase of the Federal Communications Commission (FCC)
« is determined by these by normalization). First two obf the USA. These data sets contain snapshots of the tower

Fig. 4. The subset of the Mountain View data set used in fitting



TABLE I
PARAMETERS FOR BESTGEYER SATURATION MODEL FITS
FOR THEFCCDATA SETS.

Parameters Fit
©
E - Data set r ¢ Ié; y
AM stations 10000 2 8.8400 x 10710 1.7268
FM stations 5000 4 1.5296 x 109 1.6908
- NTSC TV stations 10000 2  2.7496 x 10710 1.7995
£ 8 Digital TV stations 50000 3  1.0528 x 10719  1.3435
gf Cellular sites 24000 2  1.6176 x 10~ 0.5162
3

-5e-06

can be modeled effectively by the spatial statistics method
We believe that such models provide very good compromise
in terms of abstraction level between the overly simplistic
Poisson modeling or direct application of techniques for
[ B : : modeling the connectivity of the network, and working with
-1e-05 -5e-06 0e+00 5e-06 experimental data directly. The fitted models can reproduce
Mean quantile of simulations key spatial statistics well for both planned and chaotic de-
Residuals: raw ployments, and are well suited for simulation work or semi-
analytical approaches. The main alternative we plan tooegpl
in future work is the use of optimization-based models as an
alternative, potentially offering more explanatory povisit
having somewhat more limited applicability.
The key observation of the optimization-driven approach is

-le-05

Fig. 6. The Q-Q plot of the Geyer fit for the Mountain View data.

TABLE |
THE FCCDATA SETS USED IN FITTING

Data set Number of points that networks are usually deployed to serve a particular pur
AM stations 4934 pose, and are thus an outcome of a complex dynamic process.
FM stations 15535 Successful fit of a point process model allows to replicate
NTSC TV stations 8922 the outcomes of this process, and yields some information
Digital TV stations 1056 about statistics related to it, but does not in the end pevid
Cellular sites 21115 much insight to the internals of the process. Highly inténgs

alternative is to construct a concredeployment model and
study its outcomes using the techniques outlined here. 8uch
model would be simplest for tightly planned systems such as
locations for a number of different transmitter technodsgi large-scale cellular networks, since the optimizatiorbfgms
We focus here on the five data sets given in Table |, consistitiz networks are deployed to solve are rather well known.
of AM and FM radio and TV transmitter locations, togetheThis approach would closely parallel current developments
with cellular radiotelephone service site locations. in modeling the structure of fixed networks, as discussed

We followed similar methodology for each data set a@ [1]. For chaotic deployments, such as placement of Wi-Fi
used above for the Mountain View case. First a region ekcess points owned by private citizens in urban areas, more
stationarity was selected, in this case a rectangularmeggar complex models would appear to be necessary. Successful
the east coast. The irregular parameters used in the fittidgvelopment of such models can shed light on the dynamics
were initially estimated frony-function andK -function plots, behind the actual network formation, which is one of the main
lowest reasonable value @f was used, and the maximumchallenges the emerging network science will have to deal
pseudolikelihood fit was obtained. The diagnostic plots] amvith. Nevertheless, we see such optimization driven models
especially the Q-Q plots were used to assess goodnessagf-complementary to the spatial statistics based oneseWnhil
fit, and the need to change the chosen irregular paramgietentially offering more insight, they are tightly cougle
values. In each case very good fits were obtained both in terors the “background”, such as population distribution, the
of L-function estimates and the distribution of the residualsptimization problem takes as one of the inputs. Of coutse, i
The final values for the model parameters are summarizedisnalso possibly to develop combined models, for example by
Table II. modeling the background separately using the spatiabstati
techniques, and then studying the outcome of the optinozati
process on top of the stochastic background model.

The results given above show that the spatial structure ofThe developed node location models have a number of
wireless communication networks in terms of node locatiomlrect applications we are exploring at present. The most

V. APPLICATIONS AND FUTURE WORK
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