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Abstract—While modeling and analysis of network topology
has been an active area of research in fixed networks, much
less work has been done towards realistic modeling of wireless
networks. The graph-based approach that has served as solid
foundation for network science in the fixed domain is not natural
for wireless communication networks, since their performance
inherently depends on thespatial relationships between nodes. In
this paper we apply techniques from spatial statistics literature
to develop models of the spatial structure of the network for
a variety of wireless network types. In particular, we construct
models of television and radio transmitter distributions that have
applications in, for example, cognitive wireless network applica-
tions. We use a stochastic approach based on fitting parametric
location models to empirical data. Our results indicate that the so-
calledGeyer saturation model can accurately reproduce the spatial
structure of a large variety of wireless network types, arising from
both planned or chaotic deployments. The resulting models can
be used in simulations or as basis of analytical calculations of
different network properties, and we believe that the presented
methodology can serve as a solid foundation for the emerging
network science of wireless communication networks.

I. I NTRODUCTION

Key research activity in the context of both wireless and
fixed networks has been the development ofrealistic and
validated stochastic models for phenomena relating to those
networks. Examples of well-developed models are those of,
e.g., wireless channels, mobility and traffic patterns. A sub-
stantially less well developed area is that of modeling the
network structure itself. In the fixed network domain there has
been significant activities towards modeling the topology and
structure of the network in terms of its connectivity structure
(see, for example, [1], [2], [3]), but in wireless networks
research where actual node locations play key role much less
has been done. By far the most common assumption still used
in both simulation work and analytical calculations is that
nodes of a wireless network are uniformly distributed over
some regionE ⊆ R

2. Some examples of worknot making this
assumption are [4], [5], [6], in which the impact of deviations
from uniformity is also discussed. However, even in those
references the used node location models are motivated only
by having a qualitative difference to the uniform case. Another
extreme approach has been to use actual node locations from
existing networks in simulations. This guarantees certainlevel
of realism, but does not allow general conclusions to be drawn.
Thus, from the wireless networking point of view, one of
the key challenges for network science is to come up with

right abstractions and models for spatial structure of wireless
networks that retains their central structural characteristics,
but are general enough to enable applications in analysis and
stochastic simulation.

In this paper we make a first attempt at developingrealistic
models of node locations for wireless networks research. We
use techniques from stochastic geometry [7], [8] and spatial
statistics [9], [10] to fit stochastic location models to a variety
of data sets, and validate the goodness-of-fit using correlation
statistics [11]. Spatial statistics techniques have been applied
extensively in a number of fields such as geography, physics
and biology to characterize and model spatial structure of
diverse phenomena. However, applications to wireless net-
works are almost non-existent in the literature. Stochastic
geometry on the other hand has been applied extensively
to wireless networking problems to derive theoretical results
on, for example, distribution of interference, typical distances
between nodes, or topological structure of the network oncea
simple model for connectivity has been assumed.

The key limitation in this line of work is that usually rather
restrictive assumptions, such as uniformly random distribution
of node locations, are needed for the analytical calculations
to become feasible. This also limits the extent experimental
data gathered from the structure of different networks can be
incorporated into the calculations. For the uniform random
case, basically only the average number of nodes in a given
area can be matched to experimental data, and indeed we
are not aware of any prior work that takes the stochastic
geometry approach beyond this. Finally, it should be noted that
the graph-based topology characterization techniques that have
successfully been applied to fixed networks have been used
to analyze wireless networks as well. However, such analysis
can easily lead into highly misleading results. This is due
to the fundamental characteristic of wireless communications,
which is inherently spatial in nature. Due to factors such
as mutual interference, power control, noise, and fluctuations
in propagation conditions graph-based representation of a
wireless network often results in a too high level of abstraction.

By adopting the spatial statistics approach, we seek to
develop models that can reproduce key characteristics of the
structure of a wireless network, but still have a solid theoretical
foundation. The modeling of spatial structure of the network
enables also more complex analysis of wireless networks by
combining the models developed here with already existing



models of propagation, user behavior, interference etc. The
results show that a relatively simple parametric model can
accurately match a variety of network types, resulting from
both planned and chaotic deployments. We give a thorough
introduction to the methodology and underlying theory, and
then give selected case studies of the fitting process itself.
Since we are discussing ongoing work, we also briefly outline
our current and future work on studying location models
developed considering the network deployment process itself,
and how location models can be applied in problems related to
dynamic spectrum access networks [12]. We believe that the
techniques presented can serve as one foundational component
in the developing field of network science, especially when
dealing with problems in which the spatial structure of the
network in question plays a central role.

The rest of the paper is structured as follows. In Section II
we give a short overview of theory of point processes, includ-
ing key statistics that can be used in modeling work driven by
experimental data, and selected models. In Section III we focus
on the problem of fitting a parametric point process model on
empirical data by means of maximum pseudolikelihoods, and
how the resulting fits can be validated by suitable statistical
analysis. Examples of fits obtained for actual node location
data sets are discussed in Section IV, and future work and
applications are given in Section V. Finally, in Section VI
conclusions are drawn.

II. N ODE LOCATIONS ASPOINT PROCESSES

Informally, point processes yield randomly distributed col-
lections of indistinguishable locations{Xi}

n

i=1 in some reg-
ular enough regionE. Both the individual locationsXi ∈ E
and the total number of pointsn are in general random, but
not independent of each other. Formally, a point process is
defined as a random counting measureN , assigning to each
measurable setA ⊆ E a random variableN(A), the number
of points inA [13], [7]. One can always write

N =
n

∑

i=1

εXi
, (1)

whereεx is a point mass atx (the measure equivalent to Dirac
delta distribution), theXi areE-valued random variables, and
n is a random variable with values in the set of extended
natural numbers (i.e., inN ∪ {+∞}). Usually N is assumed
to be simple, meaning that the pointsXi are almost surely
distinct.

The simplest example of a point process is that of the
homogeneous Poisson point process, for which N(A) is Pois-
son distributed with parameterν|A|, whereν ∈ R+ and |A|
denotes the Lebesgue measure ofA (in the two-dimensional
case|A| is simply the area ofA). Additionally, N(A) and
N(B) are required to be independent for any disjointA and
B. We can obtain richer models (calledGibbs processes) by
specifying aprobability density of a point processN , defined
as the Radon-Nikodym derivativef of N with respect to
homogeneous Point process withν = 1. For example, the

density function for the homogeneous Poisson point process
of arbitrary intensityν is simply

f(X) = exp((1 − ν)|E|)ν#(X), (2)

whereX = {X1, . . . , Xn}, with Xi ∈ E, and#(X) = n ≥
0.

The specific model we apply in the following is theGeyer
saturation process [14], a generalisation of the Strauss pro-
cess [15]. For the Strauss process we have the density

f(X) = αβ#(X)γsr(X), (3)

where sr(X) denotes the number of point pairs ofX that
are closer than distancer apart, β > 0 and 0 ≤ γ < 1
(α is for normalization). The Strauss model is powerful tool
for modeling regular point processes, in which individual
points tend to be separated by some minimum distance, but
it cannot modelclustered distributions of locations. For the
Geyer process an additionalsaturation threshold ζ is added,
bounding the contribution of the exponent ofγ. The case
ζ → ∞ yields the Strauss process as a limit. The advantage of
the Geyer process is that it removes the limitation0 ≤ γ < 1
of the Strauss process, enabling both clustered (for which
γ > 1) and regular processes to be modeled. Notice that if
γ = 1, both the Strauss and Geyer processes reduce to the
homogeneous Poisson point process.

We shall conclude this section by defining statistics for
point processes used for evaluating goodness of fit in the
following. Due to space reasons we shall be rather brief,
and refer the reader to [16] to more detailed discussion and
examples. We shall specialize to the caseE = R

n, and assume
that N is stationary, that is, that the structure ofN remains
invariant under translations. Under these conditions themean
measure µN (A) ≡ E {N(A)}, yielding the average number
of points in A, is simply ν|A|, where the constantν is the
intensity of N . Using the Euclidean metric we can study
the cumulative distribution functions of distances to nearest
point of N from an arbitrary point ofE, or from another
point of N . The latter results in thenearest neighbor distance
distribution function G(r), and the former yields theempty
space function F (r). These can be combined to theJ-function
by J(r) ≡ (1−G(r))/(1−F (r)). The interpretation ofJ(r) is
simple: values above one indicate regularity, and values below
one indicate clustering. For the homogeneous Poisson point
process we haveJ(r) = 1.

The simplest second-order statistic we shall consider is the
Ripley K-function defined heuristically by

K(r) ≡
1

ν
E {#(X ∩ B(x, r) − {x}) | x ∈ X} , (4)

whereB(x, r) denotes the ball of radiusr centered atx. For
homogeneous Poisson point process we have inE = R

2 that
K(r) = πr2, and in generalνK(r) is the expected number
of points in B(x, r) for x ∈ X. We shall also use theL-
function defined byL(r) ≡

√

K(r)/π below, since it is
slightly easier to interpret, uniform distribution of locations
yielding the straight lineL(r) = r. For clustered distributions



of locationsL(r) > r, whereasL(r) < r indicates regularity
in the corresponding length scales. In general second order
statistics such as theK-function are more powerful than
statistics based on nearest neighbor distances, and we shall
reflect this difference in our applications below as well.

III. F ITTING POINT PROCESSES TOEMPIRICAL DATA

For fitting point processes to data we shall primarily use
a parametric approach. That is, we select a family of point
processes{Nθ} parameterised byθ, which we seek to select
so that the statistics ofNθ in some sense correspond to those
of the empirical process obtained from the data. Classically
the most appropriate technique for fitting a stochastic model
to data is the method of maximum likelihood. Unfortunately
maximum likelihood estimation is in general infeasible or
computationally intensive for point processes, and pseudolike-
lihoods are often used instead. This will also be the case in
the following. We focus on Gibbs processes since for them
pseudolikelihoods can often be explicitly computed, and the
techniques for evaluating the goodness of the fit obtained
are relatively well understood. We thus assume a process
with a parameterised density functionfθ(X), for which the
Papangelou conditional intensity is defined by

λθ(x, X) ≡
fθ(X ∪ x)

fθ(X)
(5)

for pointsx /∈ X, and by

λθ(x, X) ≡
fθ(X)

fθ(X − x)
(6)

otherwise. Thelog-pseudolikelihood then becomes

log PL(θ, X) ≡
∑

xi∈X

log λθ(xi, X) −

∫

E

λθ(x, X) dx. (7)

Finding the extremum oflog PL(θ, X) with respect toθ de-
fines then the fitted model with conditional intensityλ̂(x, X)
evaluated for the data. This can in turn be used to define the
residual

R(B) ≡ #(B ∩ X) −

∫

B

λ̂(x, X) dx (8)

with applications in testing the goodness of fit [17], [18]. The
actual maximisation of the log-pseudolikelihood can be per-
formed using the numerical techniques developed by Baddeley
and Turner [19] and implemented in [20].

IV. CASE STUDIES AND EXAMPLE RESULTS

We shall now illustrate the application of the above tech-
niques on selected data sets. We shall first consider the access
point locations of the Google Mountain View Wi-Fi network,
which have been made publicly available [21]. Our treatment
of this example will be fairly detailed, outlining the necessary
steps from initial study of the data set to model selection,
fitting and validation. We shall later give results for other
network types as well in a more concise manner. For carrying
out the calculations involved we use the spatstat software
suite [20].

Fig. 1. Data set consisting of the access point locations of the Google
Mountain View Wi-Fi network.
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Fig. 2. The estimate of theJ-function for the Google Mountain View data
set.

Figure 1 shows the Wi-Fi access point data set, and Figure 2
gives theJ-function estimate of the access point locations.
From theJ-function estimate we can clearly see that the data
set is fairly regular at short distances, and heavily clustered
at distance scales beyond few hundred meters. This is typical
in planned deployments, since regularity arises naturallyform
coverage optimization and interference minimization, whereas
large-scale population distribution induces the clustering ef-
fect. The plot also shows that approximation of the locations
by a homogeneous Poisson point process would not be very
appropriate at any length scale, so more elaborate models
should be considered.

First step in the fitting process is to ensure that the assump-
tions made during the development of the theory are actually
satisfied by the data set. In case we seek direct fit for the
location distribution without considering covariates such as the
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Fig. 3. The kernel density estimate of the intensity of the Mountain View
data set.

Fig. 4. The subset of the Mountain View data set used in fitting.

underlying population distribution, we should ensure thatthe
data set considered is approximately stationary. We do this
by studying the dependency of the intensity of the process
by means of kernel density estimate, shown in Figure 4. The
figure confirms the expectation that the overall density is much
higher in the centre of the area, and thus there is a radial
non-stationarity in the data. To compensate for this, we shall
instead focus on a subset of data point shown in Figure 4,
corresponding to area towards east from the centre in which
the overall distribution is clearly close to stationary.

Now that the data set used for fitting is selected, we need
to specify the model to be fitted. We shall apply the Geyer
saturation process due to its versatility, and perform the fit
by means of maximum pseudolikelihood as discussed above.
Recall that the Geyer process has four parameters, the intensity
parameterβ, the interaction parameterγ, interaction distance
r, and the saturation thresholdζ (the remaining parameter
α is determined by these by normalization). First two of
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Fig. 5. The estimate of theL function for the data set together with the
envelopes from 200 simulations of the Geyer saturation process withβ ≈

3.329 × 10
−5, γ ≈ 0.4112, ζ = 2 andr = 150 m.

these are regular parameters amenable to fitting, whereas the
irregular parameters have to be inferred by other means. For
estimatingr, we use theJ-function estimate which peaks
at roughlyr = 150 m. For the saturation thresholdζ lower
values are preferred, since these make the evaluation of the
log-pseudolikelihood computationally fast. Thus we first set
ζ = 2 and explore the results of the fit. Maximization of the
log-pseudolikelihood resulted with these choices in the fits
β ≈ 3.329 × 10−5 andγ ≈ 0.4112, consistent with a regular
point pattern.

Next step is then to evaluate the goodness of the fit obtained.
In general there are two approaches we can adopt. First is to
study statistics of the original data set compared to the statis-
tics of the obtained model. If the fit is good, key statistics such
as theK-function should agree on both the data set and the
model. Second approach is to study the residuals of the model
as defined by equation (8). Figure 5 shows theL-function
of the data set compared to the envelopes of theL-functions
for 200 realisations of the fitted model obtained by means
of Monte Carlo simulations. Numerical methods are required
since no analytical expression for the envelopes is available
for the Geyer saturation process. TheL-function for the data
set is clearly well contained within the numerically estimated
envelopes for the model, indicating that the obtained fit is of
high quality. We shall confirm this by studying the residuals
of the log-pseudolikelihood. For models featuring interactions
between points, such as the Geyer process, the appropriate
diagnostic is the quantile-quantile plot of the residuals with
envelopes again obtained from numerical simulations [22].
Figure 6 gives this plot for the data set and fit in question.
Again, very good correspondence with the model and the data
set is observed.

We shall conclude this section by briefly giving Geyer sat-
uration model fits for other types of node location data sets as
well, namely transmitter locations obtained from the licensing
database of the Federal Communications Commission (FCC)
of the USA. These data sets contain snapshots of the tower
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Fig. 6. The Q-Q plot of the Geyer fit for the Mountain View data.

TABLE I
THE FCCDATA SETS USED IN FITTING.

Data set Number of points

AM stations 4934

FM stations 15535

NTSC TV stations 8922

Digital TV stations 1056

Cellular sites 21115

locations for a number of different transmitter technologies.
We focus here on the five data sets given in Table I, consisting
of AM and FM radio and TV transmitter locations, together
with cellular radiotelephone service site locations.

We followed similar methodology for each data set as
used above for the Mountain View case. First a region of
stationarity was selected, in this case a rectangular region near
the east coast. The irregular parameters used in the fitting
were initially estimated fromJ-function andK-function plots,
lowest reasonable value ofζ was used, and the maximum
pseudolikelihood fit was obtained. The diagnostic plots, and
especially the Q-Q plots were used to assess goodness-of-
fit, and the need to change the chosen irregular parameter
values. In each case very good fits were obtained both in terms
of L-function estimates and the distribution of the residuals.
The final values for the model parameters are summarized in
Table II.

V. A PPLICATIONS AND FUTURE WORK

The results given above show that the spatial structure of
wireless communication networks in terms of node locations

TABLE II
PARAMETERS FOR BESTGEYER SATURATION MODEL FITS

FOR THEFCCDATA SETS.

Parameters Fit

Data set r ζ β γ

AM stations 10000 2 8.8400 × 10
−10

1.7268

FM stations 5000 4 1.5296 × 10
−9

1.6908

NTSC TV stations 10000 2 2.7496 × 10
−10

1.7995

Digital TV stations 50000 3 1.0528 × 10−10 1.3435

Cellular sites 24000 2 1.6176 × 10−8 0.5162

can be modeled effectively by the spatial statistics methods.
We believe that such models provide very good compromise
in terms of abstraction level between the overly simplistic
Poisson modeling or direct application of techniques for
modeling the connectivity of the network, and working with
experimental data directly. The fitted models can reproduce
key spatial statistics well for both planned and chaotic de-
ployments, and are well suited for simulation work or semi-
analytical approaches. The main alternative we plan to explore
in future work is the use of optimization-based models as an
alternative, potentially offering more explanatory powerbut
having somewhat more limited applicability.

The key observation of the optimization-driven approach is
that networks are usually deployed to serve a particular pur-
pose, and are thus an outcome of a complex dynamic process.
Successful fit of a point process model allows to replicate
the outcomes of this process, and yields some information
about statistics related to it, but does not in the end provide
much insight to the internals of the process. Highly interesting
alternative is to construct a concretedeployment model and
study its outcomes using the techniques outlined here. Sucha
model would be simplest for tightly planned systems such as
large-scale cellular networks, since the optimization problems
the networks are deployed to solve are rather well known.
This approach would closely parallel current developments
in modeling the structure of fixed networks, as discussed
in [1]. For chaotic deployments, such as placement of Wi-Fi
access points owned by private citizens in urban areas, more
complex models would appear to be necessary. Successful
development of such models can shed light on the dynamics
behind the actual network formation, which is one of the main
challenges the emerging network science will have to deal
with. Nevertheless, we see such optimization driven models
as complementary to the spatial statistics based ones. While
potentially offering more insight, they are tightly coupled
on the “background”, such as population distribution, the
optimization problem takes as one of the inputs. Of course, it
is also possibly to develop combined models, for example by
modeling the background separately using the spatial statistics
techniques, and then studying the outcome of the optimization
process on top of the stochastic background model.

The developed node location models have a number of
direct applications we are exploring at present. The most



straightforward one is to use them as parts of system level
simulations or analytical calculations either as models ofbase
station or access point locations, or those of user location
distributions. Generation of realizations of these modelsis
not expensive numerically, and implementations of the re-
quired algorithms are readily available. Much more inter-
esting application is trying to use such models in run-time
optimization taskswithin a wireless network. This requires
on-line estimation of model parameters or selection of a
model from a collection of earlier fits (essentially resulting
in a system identification problem), and then extracting the
statistics of interest to the optimization task at hand. We are
currently studying an application inspectrum sensing, related
to dynamic spectrum access (DSA) networks. In particular,
we apply numerical estimation of distance distributions of
the fitted models in estimating detection and interference
probabilities in such DSA scenarios. We believe that such on-
line usages form a very promising application area for such
stochastic models, and we are actively developing solutions
for the related estimation problems.

VI. CONCLUSIONS

In this paper we studied the problem of modeling the
spatial structure of wireless communication networks using
a stochastic approach based on the theory of point processes
and their spatial statistics. We showed that it is indeed possible
to createrealistic models of node locations with relatively
simple techniques, and that a single parametric family of
models, namely the Geyer saturation process, was capable
of replicating the structure of several different network types.
The resulting models can be used directly in simulation work
or as basis for analytical calculations. We also discussed at
length opportunities for future work, especially highlighting
the need for both deepening the understanding of the processes
by with networks are deployed, as well as the promising
outlook on applications of such models in on-line network
optimization problems. In general, we strongly argue that
the spatial statistics approach provides a solid and general
foundation for future work towards development of network
science for systems in which the spatial component plays
integral part.
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